Demonstration of 4.8 x10-17 stability at 1s for two independent optical clocks

被引:333
作者
Oelker, E. [1 ,2 ]
Hutson, R. B. [1 ,2 ]
Kennedy, C. J. [1 ,2 ]
Sonderhouse, L. [1 ,2 ]
Bothwell, T. [1 ,2 ]
Goban, A. [1 ,2 ]
Kedar, D. [1 ,2 ]
Sanner, C. [1 ,2 ]
Robinson, J. M. [1 ,2 ]
Marti, G. E. [1 ,2 ,6 ]
Matei, D. G. [3 ,7 ]
Legero, T. [3 ]
Giunta, M. [4 ,5 ]
Holzwarth, R. [4 ,5 ]
Riehle, F. [3 ]
Sterr, U. [3 ]
Ye, J. [1 ,2 ]
机构
[1] NIST, JILA, Boulder, CO 80305 USA
[2] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[3] Phys Tech Bundesanstalt, Braunschweig, Germany
[4] Menlo Syst GmbH, Martinsried, Germany
[5] Max Planck Inst Quantum Opt, Garching, Germany
[6] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA
[7] Horia Hulubei Natl Inst Phys & Nucl Engn, Magurele, Romania
基金
欧盟地平线“2020”; 日本学术振兴会; 美国国家科学基金会;
关键词
NOISE; INSTABILITY; REDUCTION;
D O I
10.1038/s41566-019-0493-4
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical atomic clocks require local oscillators with exceptional optical coherence owing to the challenge of performing spectros-copy on their ultranarrow-linewidth clock transitions. Advances in laser stabilization have thus enabled rapid progress in clock precision. A new class of ultrastable lasers based on cryogenic silicon reference cavities has recently demonstrated the longest optical coherence times to date. Here we utilize such a local oscillator with two strontium (Sr) optical lattice clocks to achieve an advance in clock stability. Through an anti-synchronous comparison, the fractional instability of both clocks is assessed to be 4.8 x 10(-17) / root tau for an averaging time tau (in seconds). Synchronous interrogation enables each clock to average at a rate of 3.5 x 10(-17) / root tau, dominated by quantum projection noise, and reach an instability of 6.6 x 10(-19) over an hour-long measurement. The ability to resolve sub-10(-18)-level frequency shifts in such short timescales will affect a wide range of applications for clocks in quantum sensing and fundamental physics.
引用
收藏
页码:714 / +
页数:8
相关论文
共 50 条
[1]   Noise and instability of an optical lattice clock [J].
Al-Masoudi, Ali ;
Doerscher, Soeren ;
Haefner, Sebastian ;
Sterr, Uwe ;
Lisdat, Christian .
PHYSICAL REVIEW A, 2015, 92 (06)
[2]   Searching for dilaton dark matter with atomic clocks [J].
Arvanitaki, Asimina ;
Huang, Junwu ;
Van Tilburg, Ken .
PHYSICAL REVIEW D, 2015, 91 (01)
[3]   Optical Spectrum Analyzer with Quantum-Limited Noise Floor [J].
Bishof, M. ;
Zhang, X. ;
Martin, M. J. ;
Ye, Jun .
PHYSICAL REVIEW LETTERS, 2013, 111 (09)
[4]   An optical lattice clock with accuracy and stability at the 10-18 level [J].
Bloom, B. J. ;
Nicholson, T. L. ;
Williams, J. R. ;
Campbell, S. L. ;
Bishof, M. ;
Zhang, X. ;
Zhang, W. ;
Bromley, S. L. ;
Ye, J. .
NATURE, 2014, 506 (7486) :71-+
[5]  
Bothwell T., 2019, JILA SR1 OPTICAL LAT
[6]   Nuclear spin effects in optical lattice clocks [J].
Boyd, Martin M. ;
Zelevinsky, Tanya ;
Ludlow, Andrew D. ;
Blatt, Sebastian ;
Zanon-Willette, Thomas ;
Foreman, Seth M. ;
Ye, Jun .
PHYSICAL REVIEW A, 2007, 76 (02)
[7]   27Al+ Quantum-Logic Clock with a Systematic Uncertainty below 10-18 [J].
Brewer, S. M. ;
Chen, J-S ;
Hankin, A. M. ;
Clements, E. R. ;
Chou, C. W. ;
Wineland, D. J. ;
Hume, D. B. ;
Leibrandt, D. R. .
PHYSICAL REVIEW LETTERS, 2019, 123 (03)
[8]   A Fermi-degenerate three-dimensional optical lattice clock [J].
Campbell, S. L. ;
Hutson, R. B. ;
Marti, G. E. ;
Goban, A. ;
Oppong, N. Darkwah ;
McNally, R. L. ;
Sonderhouse, L. ;
Robinson, J. M. ;
Zhang, W. ;
Bloom, B. J. ;
Ye, J. .
SCIENCE, 2017, 358 (6359) :90-93
[9]   Optical Clocks and Relativity [J].
Chou, C. W. ;
Hume, D. B. ;
Rosenband, T. ;
Wineland, D. J. .
SCIENCE, 2010, 329 (5999) :1630-1633
[10]  
Cole GD, 2013, NAT PHOTONICS, V7, P644, DOI [10.1038/NPHOTON.2013.174, 10.1038/nphoton.2013.174]