DeepPurpose: a deep learning library for drug-target interaction prediction

被引:270
作者
Huang, Kexin [1 ]
Fu, Tianfan [2 ]
Glass, Lucas M. [3 ]
Zitnik, Marinka [1 ]
Xiao, Cao [3 ]
Sun, Jimeng [4 ]
机构
[1] Harvard Univ, Boston, MA 02115 USA
[2] Georgia Inst Technol, Atlanta, GA 30332 USA
[3] IQVIA, Cambridge, MA 02139 USA
[4] Univ Illinois, Urbana, IL 61801 USA
关键词
D O I
10.1093/bioinformatics/btaa1005
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A Summary: Accurate prediction of drug-target interactions (DTI) is crucial for drug discovery. Recently, deep learning (DL) models for show promising performance for DTI prediction. However, these models can be difficult to use for both computer scientists entering the biomedical field and bioinformaticians with limited DL experience. We present DeepPurpose, a comprehensive and easy-to-use DL library for DTI prediction. DeepPurpose supports training of customized DTI prediction models by implementing 15 compound and protein encoders and over 50 neural architectures, along with providing many other useful features. We demonstrate state-of-the-art performance of DeepPurpose on several benchmark datasets.
引用
收藏
页码:5545 / 5547
页数:3
相关论文
共 16 条
[1]  
Abid A., 2019, ARXIV PREPRINT ARXIV
[2]  
Cho K., 2014, P SSST 8 8 WORKSH SY, P103
[3]   The Drug Repurposing Hub: a next-generation drug library and information resource [J].
Corsello, Steven M. ;
Bittker, Joshua A. ;
Liu, Zihan ;
Gould, Joshua ;
McCarren, Patrick ;
Hirschman, Jodi E. ;
Johnston, Stephen E. ;
Vrcic, Anita ;
Wong, Bang ;
Khan, Mariya ;
Asiedu, Jacob ;
Narayan, Rajiv ;
Mader, Christopher C. ;
Subramanian, Aravind ;
Golub, Todd R. .
NATURE MEDICINE, 2017, 23 (04) :405-+
[4]   Comprehensive analysis of kinase inhibitor selectivity [J].
Davis, Mindy I. ;
Hunt, Jeremy P. ;
Herrgard, Sanna ;
Ciceri, Pietro ;
Wodicka, Lisa M. ;
Pallares, Gabriel ;
Hocker, Michael ;
Treiber, Daniel K. ;
Zarrinkar, Patrick P. .
NATURE BIOTECHNOLOGY, 2011, 29 (11) :1046-U124
[5]   SimBoost: a read-across approach for predicting drug-target binding affinities using gradient boosting machines [J].
He, Tong ;
Heidemeyer, Marten ;
Ban, Fuqiang ;
Cherkasov, Artem ;
Ester, Martin .
JOURNAL OF CHEMINFORMATICS, 2017, 9
[6]   PubChem 2019 update: improved access to chemical data [J].
Kim, Sunghwan ;
Chen, Jie ;
Cheng, Tiejun ;
Gindulyte, Asta ;
He, Jia ;
He, Siqian ;
Li, Qingliang ;
Shoemaker, Benjamin A. ;
Thiessen, Paul A. ;
Yu, Bo ;
Zaslavsky, Leonid ;
Zhang, Jian ;
Bolton, Evan E. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D1102-D1109
[7]   DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences [J].
Lee, Ingo ;
Keum, Jongsoo ;
Nam, Hojung .
PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (06)
[8]   BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities [J].
Liu, Tiqing ;
Lin, Yuhmei ;
Wen, Xin ;
Jorissen, Robert N. ;
Gilson, Michael K. .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D198-D201
[9]  
Nguyen T., 2020, GRAPHDTA PREDICTING
[10]   DeepDTA: deep drug-target binding affinity prediction [J].
Ozturk, Hakime ;
Ozgur, Arzucan ;
Ozkirimli, Elif .
BIOINFORMATICS, 2018, 34 (17) :821-829