共 57 条
Yra1-bound RNA-DNA hybrids cause orientation-independent transcription-replication collisions and telomere instability
被引:56
作者:
Garcia-Rubio, Maria
[1
]
Aguilera, Paula
[2
]
Lafuente-Barquero, Juan
[1
]
Ruiz, Jose F.
[1
]
Simon, Marie-Noelle
[2
]
Geli, Vincent
[2
]
Rondon, Ana G.
[1
]
Aguilera, Andres
[1
]
机构:
[1] Univ Pablo de Olavide, CSIC, Univ Sevilla, Andalusian Ctr Mol Biol & Regenerat Med CABIMER, Seville 41092, Spain
[2] Aix Marseille Univ, Marseille Canc Res Ctr CRCM, Inst Paoli Calmettes, U1068,INSERM,UMR7258,CNRS,Equipe Labellisee Ligue, F-13273 Marseille, France
基金:
欧洲研究理事会;
关键词:
Yra1;
R loop;
transcription-replication collision;
telomeres;
R-LOOP FORMATION;
EXPORT FACTOR YRA1;
PRE-MESSENGER-RNA;
GENOME INSTABILITY;
FORK PROGRESSION;
BINDING PROTEIN;
CELLS LACKING;
THO COMPLEX;
TERRA;
RECOMBINATION;
D O I:
10.1101/gad.311274.117
中图分类号:
Q2 [细胞生物学];
学科分类号:
071009 ;
090102 ;
摘要:
R loops are an important source of genome instability, largely due to their negative impact on replication progression. Yra1/ALY is an abundant RNA-binding factor conserved from yeast to humans and required for mRNA export, but its excess causes lethality and genome instability. Here, we show that, in addition to ssDNA and ssRNA, Yra1 binds RNA-DNA hybrids in vitro and, when artificially overexpressed, can be recruited to chromatin in an RNA-DNA hybrid-dependent manner, stabilizing R loops and converting them into replication obstacles in vivo. Importantly, an excess of Yra1 increases R-loop-mediated genome instability caused by transcription-replication collisions regardless of whether they are codirectional or head-on. It also induces telomere shortening in telomerase-negative cells and accelerates senescence, consistent with a defect in telomere replication. Our results indicate that RNA-DNA hybrids form transiently in cells regardless of replication and, after stabilization by excess Yra1, compromise genome integrity, in agreement with a two-step model of R-loop-mediated genome instability. This work opens new perspectives to understand transcription-associated genome instability in repair-deficient cells, including tumoral cells.
引用
收藏
页码:965 / 977
页数:13
相关论文