Brauer groups of schemes associated to symmetric powers of smooth projective curves in arbitrary characteristics

被引:0
作者
Iyer, Jaya N. N. [1 ]
Joshua, Roy [2 ]
机构
[1] Inst Math Sci, CIT Campus, Chennai 600113, Tamil Nadu, India
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
Brauer group; Prym variety; Symmetric product of curves;
D O I
10.1016/j.jpaa.2019.06.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show that the l(n)-torsion part of the cohomological Brauer groups of certain schemes associated to symmetric powers of a projective smooth curve over a separably closed field k are isomorphic, when E is invertible in k. The schemes considered are the Symmetric powers themselves, then the corresponding Picard schemes and also certain Quot-schemes. We also obtain similar results for Prym varieties associated to certain finite covers of such curves. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1009 / 1022
页数:14
相关论文
共 31 条
[11]  
Auslander M., 1960, T AM MATH SOC, V97, P367, DOI DOI 10.2307/1993378
[12]  
BIFET E, 1989, CR ACAD SCI I-MATH, V309, P609
[13]  
Birkenhake C., 2003, COMPLEX ABELIAN VARI
[14]   Brauer Groups of Quot Schemes [J].
Biswas, Indranil ;
Dhillon, Ajneet ;
Hurtubise, Jacques .
MICHIGAN MATHEMATICAL JOURNAL, 2015, 64 (03) :493-508
[15]   RATIONAL EQUIVALENCE RING OF SYMMETRIC PRODUCTS OF CURVES [J].
COLLINO, A .
ILLINOIS JOURNAL OF MATHEMATICS, 1975, 19 (04) :567-583
[16]  
de Jong A.J., A result of Gabber
[17]  
del Baño S, 2001, J REINE ANGEW MATH, V532, P105
[18]   BRAUER GROUP OF FIBRATIONS AND SYMMETRIC PRODUCTS OF CURVES [J].
ELENCWAJG, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 94 (04) :597-602
[19]  
Gabber O., 1981, LECT NOTES MATH, V844, P129
[20]  
GROTHENDIECK A, 1968, 10 EXPOSES COHOMOLOG