Restacked nanohybrid graphene layers with expanded interlayer distance enabled by inorganic spacer for highly efficient, flexible Na-ion battery anodes

被引:4
作者
Shin, Dong Ok [1 ,2 ]
Lim, Joonwon [3 ]
Lee, Myeong Ju [1 ,2 ]
Kim, Ju Young [1 ]
Oh, Jimin [1 ]
Kang, Seok Hun [1 ]
Kim, Kwang Man [1 ]
Lee, Young-Gi [1 ]
机构
[1] Elect & Telecommun Res Inst ETRI, Intelligent Sensors Res Sect, 218 Gajeong Ro, Daejeon 34129, South Korea
[2] Univ Sci & Technol UST, Dept Adv Device Engn, 217 Gajeong Ro, Daejeon 34113, South Korea
[3] Kyung Hee Univ, Dept Informat Display, Seoul 02447, South Korea
关键词
Sodium-ion batteries; Nanohybrid graphene layers; Restacking process; Expanded interlayer distance; OXIDE; PERFORMANCE; REDUCTION; LITHIUM; ELECTRODE; GRAPHITE; NANOCOMPOSITES; COMPOSITES; INSERTION;
D O I
10.1016/j.jelechem.2021.115137
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Here, we demonstrate a novel synthetic route to prepare restacked nanohybrid graphene layers (NHGLs) with the expanded interlayer distance enabled by incorporating inorganic spacer for the reliable high-capacity sodium-ion battery (NIB) anodes. Nanohybrid graphene oxide flakes (NHGOFs) were obtained through partial complexation of metallic Sn cation with graphene oxides (GOs) exfoliated from graphite. Negatively charged NHGOFs were restacked parallel to Zn substrate through an electrostatic interaction with Zn in an acidic solution. After detachment and freeze-drying step, NHGLs with the expanded interlayer distance of similar to 7.54 angstrom along the c-axis supported by metallic Sn cation spacer were achieved. To clarify the beneficial effect of the expanded interlayer distance, electrochemical performances of NHGLs anode were investigated. Finally, a flexible feature of restacked NHGLs anode was presented during a simple bending test using a pouch-type cell.
引用
收藏
页数:9
相关论文
共 48 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   A review of carbon materials and their composites with alloy metals for sodium ion battery anodes [J].
Balogun, Muhammad-Sadeeq ;
Luo, Yang ;
Qiu, Weitao ;
Liu, Peng ;
Tong, Yexiang .
CARBON, 2016, 98 :162-178
[3]   Li-O2 and Li-S batteries with high energy storage (vol 11, pg 19, 2012) [J].
Bruce, Peter G. ;
Freunberger, Stefan A. ;
Hardwick, Laurence J. ;
Tarascon, Jean-Marie .
NATURE MATERIALS, 2012, 11 (02)
[4]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[5]   Chemical reduction of graphene oxide using green reductants [J].
De Silva, K. K. H. ;
Huang, H. -H. ;
Joshi, R. K. ;
Yoshimura, M. .
CARBON, 2017, 119 :190-199
[6]   Adsorption contributions of graphene to sodium ion storage performance [J].
Fu, Hao ;
Xu, Zhanwei ;
Guan, Weiwei ;
Shen, Xuetao ;
Cao, Liyun ;
Huang, Jianfeng .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (20)
[7]   Manipulation of interlayer spacing and surface charge of carbon nanosheets for robust lithium/sodium storage [J].
Gao, Cai ;
Feng, Jianze ;
Dai, Jingrou ;
Pan, Yuanyuan ;
Zhu, Yulong ;
Wang, Wenhang ;
Dong, Yunfa ;
Cao, Linfang ;
Guan, Lu ;
Pan, Lei ;
Hu, Han ;
Wu, Mingbo .
CARBON, 2019, 153 :372-380
[8]   FROM GADGETS TO THE SMART GRID [J].
Gupta, Sujata .
NATURE, 2015, 526 (7575) :S90-S91
[9]   Large-Area Carbon Nanosheets Doped with Phosphorus: A High-Performance Anode Material for Sodium-Ion Batteries [J].
Hou, Hongshuai ;
Shao, Lidong ;
Zhang, Yan ;
Zou, Guoqiang ;
Chen, Jun ;
Ji, Xiaobo .
ADVANCED SCIENCE, 2017, 4 (01)
[10]   Spontaneous Reduction and Assembly of Graphene oxide into Three-Dimensional Graphene Network on Arbitrary Conductive Substrates [J].
Hu, Chuangang ;
Zhai, Xiangquan ;
Liu, Lili ;
Zhao, Yang ;
Jiang, Lan ;
Qu, Liangti .
SCIENTIFIC REPORTS, 2013, 3