A Hybrid Simulated Kalman Filter - Gravitational Search Algorithm (SKF-GSA)

被引:0
作者
Muhammad, Badaruddin [1 ]
Ibrahim, Zuwairie [1 ]
Jusof, Mohd Falfazli Mat [1 ]
Ab Aziz, Nor Azlina [2 ]
Aziz, Nor Hidayati Abd [2 ]
Mokhtar, Norrima [3 ]
机构
[1] Univ Malaysia Pahang, Fac Elect & Elect Engn, Pekan 26600, Pahang, Malaysia
[2] Multimedia Univ, Fac Engn & Technol, Melaka 75450, Malaysia
[3] Univ Malaya, Fac Engn, Kuala Lumpur 50603, Malaysia
来源
ICAROB 2017: PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS | 2017年
关键词
hybrid; simulated Kalman filter; gravitational search algorithm; CEC2014 benchmark problem;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, simulated Kalman filter (SKF) and gravitational search algorithm (GSA) are hybridized in such a way that GSA is employed as prediction operator in SKF. The performance is compared using CEC2014 benchmark dataset. The proposed hybrid SKF-GSA shown to perform better than individual SKF and GSA algorithm.
引用
收藏
页码:P707 / P710
页数:4
相关论文
共 3 条
[1]  
Abdul Aziz N. H., 2016, P 3 NAT C POSTGR RES, P469
[2]  
Ibrahim Z., 2015, ICIC Express Letters, V9, P3415
[3]   GSA: A Gravitational Search Algorithm [J].
Rashedi, Esmat ;
Nezamabadi-Pour, Hossein ;
Saryazdi, Saeid .
INFORMATION SCIENCES, 2009, 179 (13) :2232-2248