Analyzing 'omics data using hierarchical models

被引:43
作者
Ji, Hongkai [1 ]
Liu, X. Shirley [2 ]
机构
[1] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD USA
[2] Harvard Univ, Sch Publ Hlth, Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
关键词
D O I
10.1038/nbt.1619
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Hierarchical models provide reliable statistical estimates for data sets from high-throughput experiments where measurements vastly outnumber experimental samples.
引用
收藏
页码:337 / 340
页数:4
相关论文
共 10 条
[1]   The Bayesian revolution in genetics [J].
Beaumont, MA ;
Rannala, B .
NATURE REVIEWS GENETICS, 2004, 5 (04) :251-261
[2]   Enriching the analysis of genomewide association studies with hierarchical modeling [J].
Chen, Gary K. ;
Witte, John S. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2007, 81 (02) :397-404
[3]  
Gelman A., 2004, BAYESIAN DATA ANAL, V2nd
[4]  
Hastie T., 2009, Springer Series in Statistics, V2nd ed., DOI DOI 10.1007/978-0-387-84858-7
[5]   TileMap: create chromosomal map of tiling array hybridizations [J].
Ji, HK ;
Wong, WH .
BIOINFORMATICS, 2005, 21 (18) :3629-3636
[6]  
Ramsey F.L, 2002, STAT SLEUTH COURSE M, Vsecond
[7]   Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments [J].
Sartor, Maureen A. ;
Tomlinson, Craig R. ;
Wesselkamper, Scott C. ;
Sivaganesan, Siva ;
Leikauf, George D. ;
Medvedovic, Mario .
BMC BIOINFORMATICS, 2006, 7 (1)
[8]  
Smyth GK., 2004, Stat Appl Genet Mol Biol, V3, pArticl, DOI [10.2202/1544-6115.1027, DOI 10.2202/1544-6115.1027]
[10]   CisModule:: De novo discovery of' cis-regulatory modules by hierarchical mixture modeling [J].
Zhou, Q ;
Wong, WH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (33) :12114-12119