Singular boundary method using time-dependent fundamental solution for transient diffusion problems

被引:21
作者
Chen, Wen [1 ]
Wang, Fajie [1 ]
机构
[1] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Ctr Numer Simulat Software Engn & Sci, Coll Mech & Mat, Nanjing 210098, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Singular boundary method; Diffusion; Time-dependent fundamental solutions; Meshless; Boundary-only; Origin intensity factor; HEAT-CONDUCTION; ELEMENT METHOD; ANISOTROPIC DIFFUSION; POTENTIAL PROBLEMS; EQUATIONS; DOMAIN; MODEL; LTDRM; FLOW;
D O I
10.1016/j.enganabound.2016.04.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper documents the first attempt to apply the singular boundary method (SBM) with time-dependent fundamental solution to transient diffusion equations. An inverse interpolation technique is introduced to determine the origin intensity factor of the SBM. The scheme is mathematically simple, easy-to-program, truly boundary-only, free of integration and mesh. Several examples, especially threedimensional (3D) cases, are provided to verify time-dependent SBM strategy. The numerical results clearly demonstrate its great potential. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:115 / 123
页数:9
相关论文
共 34 条
[1]   Coupled thermal-electromagnetic model for microwave heating of temperature-dependent dielectric media [J].
Alpert, Y ;
Jerby, E .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1999, 27 (02) :555-562
[2]  
[Anonymous], 2006, MATH PROBLEMS IMAGE
[3]   ANALYSIS OF MICROWAVE-HEATING OF MATERIALS WITH TEMPERATURE-DEPENDENT PROPERTIES [J].
AYAPPA, KG ;
DAVIS, HT ;
DAVIS, EA ;
GORDON, J .
AICHE JOURNAL, 1991, 37 (03) :313-322
[4]   Fractional-order anisotropic diffusion for image denoising [J].
Bai, Jian ;
Feng, Xiang-Chu .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (10) :2492-2502
[5]   A NUMERICAL-MODEL OF COMPACTION-DRIVEN GROUNDWATER-FLOW AND HEAT-TRANSFER AND ITS APPLICATION TO THE PALEOHYDROLOGY OF INTRACRATONIC SEDIMENTARY BASINS [J].
BETHKE, CM .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1985, 90 (NB8) :6817-6828
[6]   Dual reciprocity BEM without matrix inversion for transient heat conduction [J].
Bialecki, RA ;
Jurgas, P ;
Kuhn, G .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2002, 26 (03) :227-236
[7]  
BRENNER S. C., 2008, MATH THEORY FINITE E, VThird
[8]  
Bulgakov V, 1998, INT J NUMER METH ENG, V43, P713, DOI 10.1002/(SICI)1097-0207(19981030)43:4<713::AID-NME445>3.0.CO
[9]  
2-8
[10]   A method of fundamental solutions without fictitious boundary [J].
Chen, W. ;
Wang, F. Z. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2010, 34 (05) :530-532