Structure dependent properties of carbon nanomaterials enabled fiber sensors for in situ monitoring of composites

被引:86
作者
Wang, Guantao [1 ,2 ]
Wang, Yong [1 ]
Zhang, Peipei [1 ]
Zhai, Yujiang [1 ]
Luo, Yun [2 ]
Li, Liuhe [1 ]
Luo, Sida [1 ]
机构
[1] Beihang Univ, Sch Mech Engn & Automat, Dept Mat Proc & Controlling, Beijing 100191, Peoples R China
[2] China Univ Geosci Beijing, Sch Engn & Technol, Beijing 100083, Peoples R China
关键词
Carbon nanotubes; Reduced graphene oxide; Fiber sensors; Strain sensors; Polymeric composites; Structural health monitoring; GLASS-FIBER; PIEZORESISTIVE BEHAVIOR; RAMAN-SPECTROSCOPY; STRAIN SENSOR; GRAPHENE; DAMAGE; GRAPHITE; PERSPECTIVES; NANOTUBES; FABRICS;
D O I
10.1016/j.compstruct.2018.04.052
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Carbon nanomaterials enabled fibers have been witnessed as a promising technology for in situ structural health monitoring of polymeric composites. Self-sensing composites were enabled with varied integration strategies, including carbon nanotube (CNT) coated fibers (CNTF), reduced graphene oxide (RGO) coated fibers (RGOF) and carbon fibers (CF). Piezoresistive response of varied sensors was disclosed and showed that gauge sensitivity of RGOF is the highest with a clear two-stage performance from linear to non-linear, while CNTF consistently shows well-organized signal before final fracture. Resin infiltration theory was raised to explain the observed structure-property relationship. For CNTF, resin molecules are permeable to its porous network and form integrated CNT/resin nanocomposites. Comparatively, RGO with large lateral dimension and surface conformability forms the noninvasive network from resin penetration. Based on results analysis and mechanism study, CNTF is more suitable for status recognition and long-term purposes; RGOF is more feasible for early warning of structural damages.
引用
收藏
页码:36 / 44
页数:9
相关论文
共 51 条
[1]   Delamination detection with carbon nanotube thread in self-sensing composite materials [J].
Abot, Jandro L. ;
Song, Yi ;
Vatsavaya, Maruthi Sri ;
Medikonda, Sandeep ;
Kier, Zachary ;
Jayasinghe, Chaminda ;
Rooy, Nathan ;
Shanov, Vesselin N. ;
Schulz, Mark J. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (07) :1113-1119
[2]   Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites [J].
Alamusi ;
Hu, Ning ;
Fukunaga, Hisao ;
Atobe, Satoshi ;
Liu, Yaolu ;
Li, Jinhua .
SENSORS, 2011, 11 (11) :10691-10723
[3]   Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (CNT) fibers [J].
Alexopoulos, N. D. ;
Bartholome, C. ;
Poulin, P. ;
Marioli-Riga, Z. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (02) :260-271
[4]   The role of irreversible and reversible phenomena in the piezoresistive behavior of graphene epoxy nanocomposites applied to structural health monitoring [J].
Chiacchiarelli, Leonel M. ;
Rallini, Marco ;
Monti, Marco ;
Puglia, Debora ;
Kenny, Jose M. ;
Torre, L. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2013, 80 :73-79
[5]   STRAIN-GAGE METHODS FOR MEASURING THE OPENING-MODE STRESS-INTENSITY FACTOR, KI [J].
DALLY, JW ;
SANFORD, RJ .
EXPERIMENTAL MECHANICS, 1987, 27 (04) :381-388
[6]   Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy [J].
Dresselhaus, Mildred S. ;
Jorio, Ado ;
Hofmann, Mario ;
Dresselhaus, Gene ;
Saito, Riichiro .
NANO LETTERS, 2010, 10 (03) :751-758
[7]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[8]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[9]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[10]   Raman spectroscopy as a versatile tool for studying the properties of graphene [J].
Ferrari, Andrea C. ;
Basko, Denis M. .
NATURE NANOTECHNOLOGY, 2013, 8 (04) :235-246