LARGE EDDY SIMULATION OF A PREMIXED BUNSEN FLAME USING A MODIFIED THICKENED-FLAME MODEL AT TWO REYNOLDS NUMBER

被引:21
作者
De, Ashoke [1 ]
Acharya, Sumanta [1 ,2 ]
机构
[1] Louisiana State Univ, Dept Mech Engn, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Turbine Innovat & Energy Res Ctr, Baton Rouge, LA 70803 USA
关键词
Flame-wrinkling; Large eddy simulation; Thickened flame; Turbulence; TURBULENT COMBUSTION; WRINKLING MODEL; FLOW; LES;
D O I
10.1080/00102200903076266
中图分类号
O414.1 [热力学];
学科分类号
摘要
A modified thickened flame (TF) model based on large eddy simulation (LES) methodology is used to investigate premixed combustion, and the model predictions are evaluated by comparing with the piloted premixed stoichiometric methane-air flame data for Reynolds numbers Re 24,000 (flame F3) and Re 52,000 (flame F1). The basic idea of the TF approach is that the flame front is artificially thickened to resolve on the computational LES grid while keeping the laminar flame speed (s(L)(0)) constant. The artificially thickening of the flame front is obtained by enhancing the molecular diffusion and decreasing the pre-exponential factor of the Arrhenius law. Because the flame front is artificially thickened, the response of the thickened flame to turbulence is affected and taken care of by incorporating an efficiency function (E) in the governing equations. The efficiency function (E) in the modified TF model is proposed based on the direct numerical simulations (DNS) data set of flame-vortex interactions. The predicted simulation results are compared with the experimental data and with computations reported using a Reynolds averaged Navier-Stokes (RANS)-based probability distribution function (PDF) modeling approach and RANS-based G-equation approach. It is shown that the results with the modified TF model are generally in good agreement with the data, with the TF predictions consistently comparable to the PDF model predictions and superior to the results with the G-equation approach.
引用
收藏
页码:1231 / 1272
页数:42
相关论文
共 50 条
  • [31] Large-eddy simulation of a bluff-body stabilised turbulent premixed flame using the transported flame surface density approach
    Lee, Chin Yik
    Cant, Stewart
    COMBUSTION THEORY AND MODELLING, 2017, 21 (04) : 722 - 748
  • [32] Large Eddy Simulation of a premixed bluff body stabilized flame using global and skeletal reaction mechanisms
    Zettervall, N.
    Nordin-Bates, K.
    Nilsson, E. J. K.
    Fureby, C.
    COMBUSTION AND FLAME, 2017, 179 : 1 - 22
  • [33] Large Eddy Simulation of Lean Premixed Swirling Flames via Dynamically Thickened Flame Model Coupling with the REDIM Chemistry Table
    H.-K. He
    P. Wang
    L. Xu
    Q. Xu
    L.-S. Jiang
    P. Shrotriya
    Combustion, Explosion, and Shock Waves, 2020, 56 : 634 - 647
  • [34] LARGE EDDY SIMULATION OF A TURBULENT SPRAY BURNER USING THICKENED FLAME MODEL AND ADAPTIVE MESH REFINEMENT
    Rezchikova, Aleksandra
    Mehl, Cedric
    Drennan, Scott
    Colin, Olivier
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 4C, 2020,
  • [35] Flame behaviour and flame location in large-eddy simulation of the turbulent premixed combustion
    Alhumairi, Mohammed K. H. Abbas
    Almahdawi, Yasseen A.
    Nawi, Sami A.
    ENERGY, 2021, 232
  • [36] Large eddy simulation and laser diagnostic studies on a low swirl stratified premixed flame
    Nogenmyr, K. -J.
    Fureby, C.
    Bai, X. S.
    Petersson, R.
    Collin, R.
    Linne, M.
    COMBUSTION AND FLAME, 2009, 156 (01) : 25 - 36
  • [37] Large Eddy Simulation of a Bluff Body Stabilised Premixed Flame Using Flamelets
    Massey, James C.
    Langella, Ivan
    Swaminathan, Nedunchezhian
    FLOW TURBULENCE AND COMBUSTION, 2018, 101 (04) : 973 - 992
  • [38] Effects of confinement on premixed turbulent swirling flame using large Eddy simulation
    Nogenmyr, K. -J.
    Cao, H. J.
    Chan, C. K.
    Cheng, R. K.
    COMBUSTION THEORY AND MODELLING, 2013, 17 (06) : 1003 - 1019
  • [39] Large eddy simulation of turbulent lean premixed jet flame
    Zhang, Hong-Da
    Ye, Tao-Hong
    Chen, Jing
    Zhao, Ma-Jie
    Tuijin Jishu/Journal of Propulsion Technology, 2015, 36 (07): : 1027 - 1035
  • [40] Numerical simulation of premixed propane/air flame propagation using a dynamically thickened flame approach
    Xiao, Huahua
    Mao, Zhanli
    An, Weiguang
    Wang, Qingsong
    Sun, Jinhua
    ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2, 2014, 444-445 : 1574 - 1578