Multimodal Sensor Fusion for Foot State Estimation in Bipedal Robots Using the Extended Kalman Filter

被引:0
作者
Eljaik, Jorhabib [1 ]
Kuppuswamy, Naveen [1 ]
Nori, Francesco [1 ]
机构
[1] Ist Italiano Tecnol, Dept Robot, Brain, Ad Cognit Sci RBCS, Via Morego 30, Genoa, Italy
来源
2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2015年
关键词
Extended Kalman Filter; dynamic estimation; sensor fusion; stability measurements; balance; compliant haptic sensor; inertial measurement; force-torque sensing; foot rotation indicator;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Towards enhancing the dynamic locomotion and manipulation abilities of bipedal robots in real-world scenarios, a key problem lies in the accurate estimation of the dynamic state of the feet of the robot. In this paper, an approach is presented for estimating the dynamic pose and the internal (body) and external (ground contact) wrenches acting on the individual feet of a bipedal robot fusing haptic (compliant skin), inertial, and force/torque (F/T) measurements. Assuming rigid body dynamics on an individual foot, an Extended Kalman Filter (EKF) is used to combine ankle F/T sensor readings, contact forces computed from a compliant tactile array on the foot sole and accelerometer plus gyroscope measurements, thereby estimating both the state and the external wrenches affecting a foot through a method of state augmentation. Moreover, covariance estimation of the measurement noise was carried out for all sensors, in particular, for the skin, a bayesian-network-based regression method was chosen. The framework was implemented with the iCub humanoid robot under a toppling scenario; the estimated augmented foot state was then used to compute the Foot Rotation Indicator (FRI) trajectory as a validation through prediction of the onset of toppling and instability.
引用
收藏
页码:2698 / 2704
页数:7
相关论文
共 18 条
[1]  
[Anonymous], 2002, P INT WORKSH HUM HUM
[2]   Estimation and Stabilization of Humanoid Flexibility Deformation Using Only Inertial Measurement Units and Contact Information [J].
Benallegue, Mehdi ;
Lamiraux, Florent .
INTERNATIONAL JOURNAL OF HUMANOID ROBOTICS, 2015, 12 (03)
[3]  
Bloesch M., 2012, P ROB SCI SYST SYDN
[4]  
Ciliberto C, 2014, IEEE INT C INT ROBOT, P3994, DOI 10.1109/IROS.2014.6943124
[5]  
De Schutter J., 1999, Journal A, V40, P52
[6]   Force feedback exploiting tactile and proximal force/torque sensing [J].
Fumagalli, Matteo ;
Ivaldi, Serena ;
Randazzo, Marco ;
Natale, Lorenzo ;
Metta, Giorgio ;
Sandini, Giulio ;
Nori, Francesco .
AUTONOMOUS ROBOTS, 2012, 33 (04) :381-398
[7]   Postural stability of biped robots and the foot-rotation indicator (FRI) point [J].
Goswami, A .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1999, 18 (06) :523-533
[8]  
Hahn H, 2007, P 4 INT C UB ROB AMB
[9]  
Kajita S., 2008, Springer Handbook of Robotics, P361, DOI [10.1007/978-3-540-30301-517, DOI 10.1007/978-3-540-30301-517]
[10]   A Flexible and Robust Large Scale Capacitive Tactile System for Robots [J].
Maiolino, Perla ;
Maggiali, Marco ;
Cannata, Giorgio ;
Metta, Giorgio ;
Natale, Lorenzo .
IEEE SENSORS JOURNAL, 2013, 13 (10) :3910-3917