Meshless and analytical solutions to the time-dependent advection-diffusion-reaction equation with variable coefficients and boundary conditions

被引:8
作者
Gharib, M. [1 ]
Khezri, M. [2 ]
Foster, S. J. [1 ]
机构
[1] Univ New South Wales, Sch Civil & Environm Engn, Ctr Infrastruct Engn & Safety, Sydney, NSW 2052, Australia
[2] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia
关键词
Advection-diffusion-reaction Reproducing kernel particle method; Meshless; Analytical; Robin boundary condition; Surface diffusivity; KERNEL PARTICLE METHOD; FREE GALERKIN METHODS; COLLOCATION METHOD; CHLORIDE DIFFUSION; FINITE-ELEMENT; TRANSPORT; APPROXIMATIONS; HYDRODYNAMICS; ENFORCEMENT; ADSORPTION;
D O I
10.1016/j.apm.2017.04.033
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A variety of physical problems in science may be expressed using the advection-diffusion-reaction (ADR) equation that covers heat transfer and transport of mass and chemicals into a porous or a nonporous media. In this paper, the meshless generalised reproducing kernel particle method (RKPM) is utilised to numerically solve the time-dependent ADR problem in a general n-dimensional space with variable coefficients and boundary conditions. A time -dependent Robin boundary condition is formulated and precisely enforced in a novel approach. The accuracy and robustness of the meshless solution is verified against finite element simulations and a general one-dimensional analytical solution obtained in this study. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:220 / 242
页数:23
相关论文
共 62 条
[31]   Analytical solutions to one-dimensional advection-diffusion equation with variable coefficients in semi-infinite media [J].
Kumar, Atul ;
Jaiswal, Dilip Kumar ;
Kumar, Naveen .
JOURNAL OF HYDROLOGY, 2010, 380 (3-4) :330-337
[32]   Analytical solutions of one-dimensional advection-diffusion equation with variable coefficients in a finite domain [J].
Kumar, Atul ;
Jaiswal, Dilip Kumar ;
Kumar, Naveen .
JOURNAL OF EARTH SYSTEM SCIENCE, 2009, 118 (05) :539-549
[33]  
LANCASTER P, 1981, MATH COMPUT, V37, P141, DOI 10.1090/S0025-5718-1981-0616367-1
[34]   MATHEMATICS OF ADSORPTION IN BEDS .6. THE EFFECT OF LONGITUDINAL DIFFUSION IN ION EXCHANGE AND CHROMATOGRAPHIC COLUMNS [J].
LAPIDUS, L ;
AMUNDSON, NR .
JOURNAL OF PHYSICAL CHEMISTRY, 1952, 56 (08) :984-988
[35]   Complex variable moving least-squares method: a meshless approximation technique [J].
Liew, K. M. ;
Feng, Cong ;
Cheng, Yumin ;
Kitipornchai, S. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 70 (01) :46-70
[36]  
Lin H, 2000, CMES-COMP MODEL ENG, V1, P45
[37]  
Lindstrom F T, 1967, Environ Sci Technol, V1, P561, DOI 10.1021/es60007a001
[38]  
Liu G.R., 2010, Meshfree methods: moving beyond the finite element method
[39]   Enrichment of the finite element method with the reproducing kernel particle method [J].
Liu, WK ;
Uras, RA ;
Chen, Y .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1997, 64 (04) :861-870
[40]   Moving least-square reproducing kernel methods .1. Methodology and convergence [J].
Liu, WK ;
Li, SF ;
Belytschko, T .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 143 (1-2) :113-154