On the Stokes semigroup in some non-Helmholtz domains

被引:11
作者
Abe, Ken [1 ]
Giga, Yoshikazu [2 ]
Schade, Katharina [3 ]
Suzuki, Takuya [2 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[2] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
[3] Tech Univ Darmstadt, Fachbereich Math, D-64298 Darmstadt, Germany
基金
日本学术振兴会;
关键词
Sector-like domain; Helmholtz decomposition; Neumann problem; Weighted estimate; RESOLVENT ESTIMATE; OPERATOR; ANALYTICITY; EQUATION; SPACES;
D O I
10.1007/s00013-015-0729-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper shows that the L (p) -Helmholtz decomposition is not necessary to establish the analyticity of the Stokes semigroup in C (0,sigma) , the L (a)-closure of the space of all compactly supported smooth solenoidal vector fields. In fact, in a sector-like domain for which the L (p) -Helmholtz decomposition does not hold, the analyticity of the Stokes semigroup in C (0,sigma) is proved.
引用
收藏
页码:177 / 187
页数:11
相关论文
共 19 条
[1]   The L a-Stokes semigroup in exterior domains [J].
Abe, Ken ;
Giga, Yoshikazu .
JOURNAL OF EVOLUTION EQUATIONS, 2014, 14 (01) :1-28
[2]   Analyticity of the Stokes semigroup in spaces of bounded functions [J].
Abe, Ken ;
Giga, Yoshikazu .
ACTA MATHEMATICA, 2013, 211 (01) :1-46
[3]   On a resolvent estimate of the Stokes equation on an infinite layer [J].
Abe, T ;
Shibata, Y .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2003, 55 (02) :469-497
[4]   On a Resolvent Estimate of the Stokes Equation on an Infinite Layer Part 2, λ=0 Case [J].
Abe, Takayuki ;
Shibata, Yoshihiro .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2003, 5 (03) :245-274
[5]  
Abels H, 2005, DIFFER INTEGRAL EQU, V18, P1081
[6]  
[Anonymous], STOKES RESO IN PRESS
[7]  
[Anonymous], STOKES RESOLVE UNPUB
[8]  
[Anonymous], THESIS TU DARMSTADT
[9]  
[Anonymous], MONOGRAPHS MATH
[10]  
[Anonymous], CALC VAR PD IN PRESS