Residual-based shock capturing in solids

被引:10
作者
Bazilevs, Yuri [1 ]
Kamensky, David [2 ]
Moutsanidis, Georgios [1 ]
Shende, Shaunak [1 ]
机构
[1] Brown Univ, Sch Engn, 184 Hope St, Providence, RI 02912 USA
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, 9500 Gilman Dr,Mail Code 0411, La Jolla, CA 92093 USA
关键词
Shock capturing; Objective stress rates; Hydrocodes; Extreme events; Isogeometric analysis; FLUID-STRUCTURE INTERACTION; ISOGEOMETRIC COLLOCATION; GALERKIN METHODS; ELASTODYNAMICS; HYDRODYNAMICS; INTEGRATION; SIMULATION; EQUATIONS; DYNAMICS; FLOWS;
D O I
10.1016/j.cma.2019.112638
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper adapts the concept of residual-based shock-capturing viscosity to the setting of solid mechanics. To evaluate the residual of the momentum balance equation, one requires the divergence of the Cauchy stress. Solid constitutive models used in simulations of extreme events involving shocks typically specify the Cauchy stress in terms of a local rate equation rather than an explicit formula involving the current deformation gradient and/or strain rate; unlike in widely-used models for fluid mechanics, there is usually no closed-form expression for spatial derivatives of the solid Cauchy stress. We therefore investigate the evolution of stress gradients given rate-form models involving various objective rates of Cauchy stress. The rate equations we derive for the stress gradient are then integrated numerically to furnish the stress divergence needed to define the shock viscosity. The properties of this shock viscosity are demonstrated in benchmark problems using Lagrangian isogeometric analysis and an immersed isogeometric-meshfree simulation framework. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:20
相关论文
共 51 条
  • [1] Unified Form Language: A Domain-Specific Language for Weak Formulations of Partial Differential Equations
    Alnaes, Martin S.
    Logg, Anders
    Olgaard, Kristian B.
    Rognes, Marie E.
    Wells, Garth N.
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2014, 40 (02):
  • [2] [Anonymous], 2015, Technical Report ANL-95/11 - Revision 3.6
  • [3] [Anonymous], 2012, AUTOMATED SOLUTION D
  • [4] Isogeometric collocation for elastostatics and explicit dynamics
    Auricchio, F.
    da Veiga, L. Beirao
    Hughes, T. J. R.
    Reali, A.
    Sangalli, G.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 249 : 2 - 14
  • [5] ISOGEOMETRIC COLLOCATION METHODS
    Auricchio, F.
    Da Veiga, L. Beirao
    Hughes, T. J. R.
    Reali, A.
    Sangalli, G.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (11) : 2075 - 2107
  • [6] Balay S, 1997, MODERN SOFTWARE TOOLS FOR SCIENTIFIC COMPUTING, P163
  • [7] Isogeometric fluid-structure interaction: theory, algorithms, and computations
    Bazilevs, Y.
    Calo, V. M.
    Hughes, T. J. R.
    Zhang, Y.
    [J]. COMPUTATIONAL MECHANICS, 2008, 43 (01) : 3 - 37
  • [8] YZβ discontinuity capturing for advection-dominated processes with application to arterial drug delivery
    Bazilevs, Y.
    Calo, V. M.
    Tezduyar, T. E.
    Hughes, T. J. R.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 54 (6-8) : 593 - 608
  • [9] A new formulation for air-blast fluid-structure interaction using an immersed approach. Part I: basic methodology and FEM-based simulations
    Bazilevs, Y.
    Kamran, K.
    Moutsanidis, G.
    Benson, D. J.
    Onate, E.
    [J]. COMPUTATIONAL MECHANICS, 2017, 60 (01) : 83 - 100
  • [10] A new formulation for air-blast fluid-structure interaction using an immersed approach: part II-coupling of IGA and meshfree discretizations
    Bazilevs, Y.
    Moutsanidis, G.
    Bueno, J.
    Kamran, K.
    Kamensky, D.
    Hillman, M. C.
    Gomez, H.
    Chen, J. S.
    [J]. COMPUTATIONAL MECHANICS, 2017, 60 (01) : 101 - 116