Delay-driven spatial patterns in a predator-prey model with constant prey harvesting

被引:1
作者
Gan, Wenzhen [1 ]
Lin, Zhigui [2 ]
Pedersen, Michael [3 ]
机构
[1] Jiangsu Univ Technol, Sch Math & Phys, Changzhou 213001, Peoples R China
[2] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
[3] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2022年 / 73卷 / 03期
关键词
Prey harvesting; Time delay; Hopf bifurcation; Spiral wave; Target wave; STABILITY; DYNAMICS; SYSTEMS; BIFURCATION; PLANKTON; CHAOS;
D O I
10.1007/s00033-022-01761-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a predator-prey model with time delay and constant prey harvesting. We investigate the effect of the time delay on the stability of the coexistence equilibrium and demonstrate that time delay can induce spatial patterns. Furthermore, a Hopf bifurcation occurs when the delay increases to a critical value. By applying normal form theory and the center manifold theorem, we develop the explicit formulae that determines the stability and direction of the bifurcating periodic solutions. Finally, we show how the initial condition affects the types of spatial patterns by numerical simulations.
引用
收藏
页数:18
相关论文
共 32 条
[1]   Influence of discrete delay on pattern formation in a ratio-dependent prey-predator model [J].
Banerjee, Malay ;
Zhang, Lai .
CHAOS SOLITONS & FRACTALS, 2014, 67 :73-81
[2]   Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system [J].
Banerjee, Malay ;
Petrovskii, Sergei .
THEORETICAL ECOLOGY, 2011, 4 (01) :37-53
[3]   Delay driven vegetation patterns of a plankton system on a network [J].
Bao, Xiaomei ;
Tian, Canrong .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 521 :74-88
[4]   Convergence results in a well-known delayed predator-prey system [J].
Beretta, E ;
Kuang, Y .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 204 (03) :840-853
[5]   STABILITY OF SOME POPULATION MODELS WITH DELAY [J].
BRAUER, F .
MATHEMATICAL BIOSCIENCES, 1977, 33 (3-4) :345-358
[6]   STABILITY REGIONS IN PREDATOR-PREY SYSTEMS WITH CONSTANT-RATE PREY HARVESTING [J].
BRAUER, F ;
SOUDACK, AC .
JOURNAL OF MATHEMATICAL BIOLOGY, 1979, 8 (01) :55-71
[7]   Coexistence region and global dynamics of a harvested predator-prey system [J].
Dai, GR ;
Tang, MX .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (01) :193-210
[8]  
FREEDMAN HI, 1983, B MATH BIOL, V45, P991, DOI 10.1016/S0092-8240(83)80073-1
[9]   Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB [J].
Garvie, Marcus R. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2007, 69 (03) :931-956
[10]  
Hassard B.D., 1981, Theory and Applications of Hopf Bifurcation