Cluster Monte Carlo algorithm for the quantum rotor model

被引:77
|
作者
Alet, F [1 ]
Sorensen, ES
机构
[1] Univ Toulouse 3, Phys Quant Lab, F-31062 Toulouse, France
[2] Univ Toulouse 3, UMR 5626, F-31062 Toulouse, France
[3] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 01期
关键词
D O I
10.1103/PhysRevE.67.015701
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose a highly efficient "worm"-like cluster Monte Carlo algorithm for the quantum rotor model in the link-current representation. We explicitly prove detailed balance for the algorithm even in the presence of disorder. For the pure quantum rotor model with mu=0, the algorithm yields high- precision estimates for the critical point K-c=0.333 05(5) and the correlation length exponent nu=0.670(3). For the disordered case, mu=1/2+/-1/2, we find nu=1.15(10).
引用
收藏
页数:4
相关论文
共 50 条
  • [1] CLUSTER MONTE-CARLO ALGORITHM FOR THE STUDY OF QUANTUM X-Y MODEL
    JI, DR
    YING, HP
    CHEN, F
    ZHANG, JB
    HIGH ENERGY PHYSICS & NUCLEAR PHYSICS-ENGLISH EDITION, 1995, 19 (01): : 61 - 68
  • [2] Solving quantum rotor model with different Monte Carlo techniques
    姜伟伦
    潘高培
    刘毓智
    孟子杨
    Chinese Physics B, 2022, 31 (04) : 165 - 175
  • [3] Solving quantum rotor model with different Monte Carlo techniques
    Jiang, Weilun
    Pan, Gaopei
    Liu, Yuzhi
    Meng, Zi-Yang
    CHINESE PHYSICS B, 2022, 31 (04)
  • [4] MONTE-CARLO SIMULATIONS OF THE QUANTUM X-Y MODEL BY A LOOP-CLUSTER ALGORITHM
    JI, DR
    YING, HP
    CHINESE PHYSICS LETTERS, 1994, 11 (01) : 49 - 52
  • [5] Cluster Monte Carlo study of the quantum XY model in two dimensions
    Kawashima, N
    Jarrell, M
    Gubernatis, JE
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C-PHYSICS AND COMPUTERS, 1996, 7 (03): : 433 - 440
  • [6] Multiworm algorithm quantum Monte Carlo
    Lingua, F.
    Capogrosso-Sansone, B.
    Safavi-Naini, A.
    Jahangiri, A. J.
    Penna, V
    PHYSICA SCRIPTA, 2018, 93 (10)
  • [7] The dynamical cluster approximation with quantum Monte Carlo cluster solvers
    Jarrell, M.
    Macridin, A.
    Mikelsons, K.
    Doluweera, D. G. S. P.
    Gubernatis, J. E.
    LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XII, 2008, 1014 : 34 - +
  • [8] Fast update algorithm for the quantum Monte Carlo simulation of the Hubbard model
    Nukala, Phani K. V. V.
    Maier, Thomas A.
    Summers, Michael S.
    Alvarez, Gonzalo
    Schulthess, Thomas C.
    PHYSICAL REVIEW B, 2009, 80 (19):
  • [9] Quantum Monte Carlo loop algorithm for the t-J model
    Ammon, B
    Evertz, HG
    Kawashima, N
    Troyer, M
    Frischmuth, B
    PHYSICAL REVIEW B, 1998, 58 (08) : 4304 - 4319
  • [10] Worm algorithm in quantum Monte Carlo simulations
    Prokof'ev, N.V.
    Svistunov, B.V.
    Tupitsyn, I.S.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 238 (4-5): : 253 - 257