Approximation by Generalized Integral Favard-Szasz Type Operators Involving Sheffer Polynomials

被引:3
作者
Karateke, Seda [1 ]
Atakut, Cigdem [2 ]
Buyukyazici, Ibrahim [2 ]
机构
[1] Istanbul Arel Univ, Fac Sci & Letters, Dept Math & Comp Sci, Istanbul, Turkey
[2] Ankara Univ, Fac Sci, Dept Math, Ankara, Turkey
关键词
Integral operators; Favard-Szasz operators; modulus of continuity; Appell polynomials; Peetre's K-functional;
D O I
10.2298/FIL1907921K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with the approximation properties of a generalization of an integral type operator in the sense of Favard-Szasz type operators including Sheffer polynomials with graphics plotted using Maple.We investigate the order of convergence, in terms of the first and the second order modulus of continuity, Peetre's K-functional and give theorems on convergence in weighted spaces of functions by means of weighted Korovkin type theorem. At the end of the work, we give some numerical examples.
引用
收藏
页码:1921 / 1935
页数:15
相关论文
共 14 条
  • [1] Altomare F, 1994, GRUYTER STUDIES MATH, V17
  • [2] [Anonymous], 1987, Moduli of Smoothness
  • [3] [Anonymous], 1995, Stud. Univ. Babes-Bolyai Math
  • [4] The estimates of approximation by using a new type of weighted modulus of continuity
    Gadjiev, A. D.
    Aral, A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (01) : 127 - 135
  • [5] Gadjiev A.D., 1974, Sov. Math. Dokl., V218, P1433
  • [6] Gadjiev A. D., 1976, Math. Zametki, V20, P781, DOI DOI 10.1016/J.JMAA.2006.04.070
  • [7] Gavrea I., 1993, REV ANAL NUMER THEOR, V22, P173
  • [8] Ismail M., 1974, Mathematica (Cluj), V39, P259
  • [9] Jakimovski A., 1969, Mathematica (Cluj), V34, P97
  • [10] MAZHAR SM, 1985, ACTA SCI MATH, V49, P257