Liouville type theorem for nonlinear elliptic system involving Grushin operator

被引:27
作者
Anh Tuan Duong [1 ]
Quoc Hung Phan [2 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, 136 Xuan Thuy, Hanoi, Vietnam
[2] Duy Tan Univ, Inst Res & Dev, Da Nang, Vietnam
关键词
Liouville-type theorem; Grushin operator; Stable solutions; Elliptic system; LANE-EMDEN SYSTEMS; HEISENBERG-GROUP; R-N; EQUATIONS; CLASSIFICATION;
D O I
10.1016/j.jmaa.2017.05.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the degenerate elliptic system of the form {-Delta(G)u = v(p) on R-N = R-N1 x R-N2, {-Delta(G)u = u(q) where Delta(G) := Delta(x) + vertical bar x vertical bar(2 alpha)Delta(y), is the Grushin operator, alpha >= 0 and p >= q > 1. We establish some Liouville type results for stable solutions of the system. In particular, we prove the comparison principle - a crucial step to establish such results. As consequences, we obtain a Liouville type theorem for the scalar equation and provide a counterpart of the previous result in C. Cowan (2013) [7]. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:785 / 801
页数:17
相关论文
共 31 条
[1]  
[Anonymous], 1996, DIFFER INTEGRAL EQU
[2]  
[Anonymous], 1996, Differ. Integral Equ.
[3]  
BAOUENDI MS, 1967, B SOC MATH FR, V95, P45
[4]  
Bidaut-Veron M.-F., 2000, ADV DIFFERENTIAL EQU, V5, P147
[5]   Liouville theorems for semilinear equations on the Heisenberg group [J].
Birindelli, I ;
Dolcetta, IC ;
Cutri, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (03) :295-308
[6]  
Birindelli I, 1999, COMMUN PART DIFF EQ, V24, P1875
[7]  
Busca J, 2002, INDIANA U MATH J, V51, P37
[8]  
Capuzzo Dolcetta I., 1997, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V25, P239
[9]   ON THE HARDY-LITTLEWOOD-SOBOLEV TYPE SYSTEMS [J].
Cheng, Ze ;
Huang, Genggeng ;
Li, Congming .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (06) :2059-2074
[10]   Liouville theorems for stable Lane-Emden systems and biharmonic problems [J].
Cowan, Craig .
NONLINEARITY, 2013, 26 (08) :2357-2371