The Jordan algebras of a Lie algebra

被引:23
作者
Fernandez Lopez, Antonio
Garcia, Esther [1 ]
Gomez Lozano, Miguel
机构
[1] Univ Rey Juan Carlos, Dept Matemat Aplicada, Madrid 28933, Spain
[2] Univ Malaga, Dept Algebra Geometr & Topol, Malaga 29071, Spain
关键词
D O I
10.1016/j.jalgebra.2006.02.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We attach a Jordan algebra L-x to any ad-nilpotent element x of index of nilpotence at most 3 in a Lie algebra L. This Jordan algebra has a behavior similar to that of the local algebra of a Jordan system at an element. Thus, L-x inherits nice properties from L and keeps relevant information about the element x. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:164 / 177
页数:14
相关论文
共 31 条
[1]   Primitive Jordan pairs and triple systems [J].
Anquela, JA ;
Cortes, T .
JOURNAL OF ALGEBRA, 1996, 184 (02) :632-678
[2]   Local and subquotient inheritance of simplicity in Jordan systems [J].
Anquela, JA ;
Cortés, T .
JOURNAL OF ALGEBRA, 2001, 240 (02) :680-704
[3]   Finitary simple Lie algebras [J].
Baranov, AA .
JOURNAL OF ALGEBRA, 1999, 219 (01) :299-329
[4]  
Beidar K. T., 1996, PURE APPL MATH, V196
[5]   LIE INNER IDEAL STRUCTURE OF ASSOCIATIVE RINGS [J].
BENKART, G .
JOURNAL OF ALGEBRA, 1976, 43 (02) :561-584
[6]   INNER IDEALS AND AD-NILPOTENT ELEMENTS OF LIE-ALGEBRAS [J].
BENKART, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 232 (SEP) :61-81
[7]   Noetherian Banach Jordan pairs [J].
Boudi, N ;
Marhnine, H ;
Zarhouti, C ;
Lopez, AF ;
Rus, EG .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2001, 130 :25-36
[8]   The structure of quadratic Jordan systems of Clifford type [J].
D'Amour, A ;
McCrimmon, K .
JOURNAL OF ALGEBRA, 2000, 234 (01) :31-89
[9]   THE LOCAL ALGEBRAS OF JORDAN SYSTEMS [J].
DAMOUR, A ;
MCCRIMMON, K .
JOURNAL OF ALGEBRA, 1995, 177 (01) :199-239
[10]  
DRAPER C, SOCLE NONDEGENERATED