CT radiomics-based prediction of anaplastic lymphoma kinase and epidermal growth factor receptor mutations in lung adenocarcinoma

被引:26
作者
Choe, Jooae [1 ,2 ]
Lee, Sang Min [1 ,2 ]
Kim, Wooil [3 ]
Do, Kyung-Hyun [1 ,2 ]
Kim, Seonok [4 ]
Choi, Sehoon [5 ]
Seo, Joon Beom [1 ,2 ]
机构
[1] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Radiol, 88 Olympic Ro 43 Gil, Seoul 138736, South Korea
[2] Univ Ulsan, Coll Med, Asan Med Ctr, Res Inst Radiol, 88 Olympic Ro 43 Gil, Seoul 138736, South Korea
[3] Univ Virginia Hlth Syst, Dept Radiol & Med Imaging, Charlottesville, VA USA
[4] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Med Stat, Seoul, South Korea
[5] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Cardiothorac Surg, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Lung cancer; Adenocarcinoma; Radiomics; IMAGING PHENOTYPES; EGFR; ALK; FEATURES; PATTERN;
D O I
10.1016/j.ejrad.2021.109710
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To develop and validate a CT-based radiomic model to simultaneously diagnose anaplastic lymphoma kinase (ALK) rearrangements and epidermal growth factor receptor (EGFR) mutation status of lung adenocarcinoma and to assess whether peritumoural radiomic features add value in the prediction of mutation status. Methods: 503 patients with pathologically proven lung adenocarcinoma containing information on the mutation status were retrospectively included. Intratumoural and peritumoural radiomic features of the primary lesion were extracted from CT. We proposed two-level stepwise binary radiomics-based classification models to diagnose ALK (step1) and EGFR mutation status (step2). The performance of proposed models and added value of peritumoural radiomic features were evaluated by using the areas under receiver operating characteristic curves (AUC) and Obuchowski index in the development and validation sets. Results: Regarding the prediction of ALK rearrangement, the diagnostic performance of the intratumoural radiomic model showed the AUC of 0.77 and 0.68 for the development and validation sets, respectively. As for EGFR mutation, the diagnostic performance of the intratumoural radiomic model showed the AUCs of 0.64 and 0.62 for the development and validation sets, respectively. The radiomics added value to the model based on clinical features (development set [radiomics + clinical model vs. clinical model]: Obuchowski index, 0.76 vs. 0.66, p < 0.001; validation set: 0.69 vs. 0.61, p = 0.075). Adding peritumoural features resulted in no improvement in terms of model performance. Conclusion: The CT radiomics-based model allowed the simultaneous prediction of the presence of ALK and EGFR mutations while adding value to the clinical features.
引用
收藏
页数:9
相关论文
共 28 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas [J].
Beig, Niha ;
Khorrami, Mohammadhadi ;
Alilou, Mehdi ;
Prasanna, Prateek ;
Braman, Nathaniel ;
Orooji, Mahdi ;
Rakshit, Sagar ;
Bera, Kaustav ;
Rajiah, Prabhakar ;
Ginsberg, Jennifer ;
Donatelli, Christopher ;
Thawani, Rajat ;
Yang, Michael ;
Jacono, Frank ;
Tiwari, Pallavi ;
Velcheti, Vamsidhar ;
Gilkeson, Robert ;
Linden, Philip ;
Madabhushi, Anant .
RADIOLOGY, 2019, 290 (03) :783-792
[3]  
Breiman L., 2001, IEEE Trans. Broadcast., V45, P5
[4]   Molecular biomarkers for lung adenocarcinoma [J].
Calvayrac, Olivier ;
Pradines, Anne ;
Pons, Elvire ;
Mazieres, Julien ;
Guibert, Nicolas .
EUROPEAN RESPIRATORY JOURNAL, 2017, 49 (04)
[5]   Deep Learning-based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses [J].
Choe, Jooae ;
Lee, Sang Min ;
Do, Kyung-Hymn ;
Lee, Gaeun ;
Lee, June-Goo ;
Seo, Joon Beom .
RADIOLOGY, 2019, 292 (02) :365-373
[6]   ALK Rearrangements Are Mutually Exclusive with Mutations in EGFR or KRAS: An Analysis of 1,683 Patients with Non-Small Cell Lung Cancer [J].
Gainor, Justin F. ;
Varghese, Anna M. ;
Ou, Sai-Hong Ignatius ;
Kabraji, Sheheryar ;
Awad, Mark M. ;
Katayama, Ryohei ;
Pawlak, Amanda ;
Mino-Kenudson, Mari ;
Yeap, Beow Y. ;
Riely, Gregory J. ;
Iafrate, A. John ;
Arcila, Maria E. ;
Ladanyi, Marc ;
Engelman, Jeffrey A. ;
Dias-Santagata, Dora ;
Shaw, Alice T. .
CLINICAL CANCER RESEARCH, 2013, 19 (15) :4273-4281
[7]   Predictive radiogenomics modeling of EGFR mutation status in lung cancer [J].
Gevaert, Olivier ;
Echegaray, Sebastian ;
Khuong, Amanda ;
Hoang, Chuong D. ;
Shrager, Joseph B. ;
Jensen, Kirstin C. ;
Berry, Gerald J. ;
Guo, H. Henry ;
Lau, Charles ;
Plevritis, Sylvia K. ;
Rubin, Daniel L. ;
Napel, Sandy ;
Leung, Ann N. .
SCIENTIFIC REPORTS, 2017, 7
[8]   MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy [J].
Horvat, Natally ;
Veeraraghavan, Harini ;
Khan, Monika ;
Blazic, Ivana ;
Zheng, Junting ;
Capanu, Marinela ;
Sala, Evis ;
Garcia-Aguilar, Julio ;
Gollub, Marc J. ;
Petkovska, Iva .
RADIOLOGY, 2018, 287 (03) :833-843
[9]   Content-Based Image Retrieval of Chest CT with Convolutional Neural Network for Diffuse Interstitial Lung Disease: Performance Assessment in Three Major Idiopathic Interstitial Pneumonias [J].
Hwang, Hye Jeon ;
Seo, Joon Beom ;
Lee, Sang Min ;
Kim, Eun Young ;
Park, Beomhee ;
Bae, Hyun-Jin ;
Kim, Namkug .
KOREAN JOURNAL OF RADIOLOGY, 2021, 22 (02) :281-290
[10]   Tumor Spread through Air Spaces is an Important Pattern of Invasion and Impacts the Frequency and Location of Recurrences after Limited Resection for Small Stage I Lung Adenocarcinomas [J].
Kadota, Kyuichi ;
Nitadori, Jun-ichi ;
Sima, Camelia S. ;
Ujiie, Hideki ;
Rizk, Nabil P. ;
Jones, David R. ;
Adusumilli, Prasad S. ;
Travis, William D. .
JOURNAL OF THORACIC ONCOLOGY, 2015, 10 (05) :806-814