Statistical arbitrage trading with wavelets and artificial neural networks

被引:4
作者
Zapart, C [1 ]
机构
[1] Adv Financial Trading Solut Ltd, Enfield EN3 6YA, Middx, England
来源
2003 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING, PROCEEDINGS | 2003年
关键词
artificial neural networks; binomial trees; Black-Scholes formulae; bootstrap; delta-hedging; option pricing; statistical arbitrage; stochastic volatility; wavelets;
D O I
10.1109/CIFER.2003.1196339
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
The paper outlines the use of an alternative option pricing scheme to perform statistical arbitrage in derivative markets. The method links a binomial tree to an innovative stochastic volatility model that is based on wavelets and artificial neural networks. Wavelets provide a convenient signal/noise decomposition of volatility in a non-linear feature space. Neural networks are used to infer future volatility levels from the wavelets feature space in an iterative manner The bootstrap method provides 95% confidence intervals for the option prices. When used to set up delta-hedged arbitrage trades in the US equity options market, the proposed approach generates substantial profits.
引用
收藏
页码:429 / 435
页数:7
相关论文
共 11 条
[1]  
[Anonymous], 1994, NEURAL NETWORKS
[2]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[3]   VALUATION OF OPTIONS FOR ALTERNATIVE STOCHASTIC-PROCESSES [J].
COX, JC ;
ROSS, SA .
JOURNAL OF FINANCIAL ECONOMICS, 1976, 3 (1-2) :145-166
[4]  
DEMPSTER MAH, 2000, P 2 INT C INT DAT EN, P215
[5]  
HAZARIKA N, 1997, P SPIE APPL SCI ART, P94
[6]   THE PRICING OF OPTIONS ON ASSETS WITH STOCHASTIC VOLATILITIES [J].
HULL, J ;
WHITE, A .
JOURNAL OF FINANCE, 1987, 42 (02) :281-300
[7]  
Hull J.C., 2016, OPTIONS FUTURES OTHE
[8]  
Lowe D, 2002, NATO SCI SER II MATH, V70, P749
[9]  
Zapart C., 2002, Quantitative Finance, V2, P487, DOI 10.1088/1469-7688/2/6/308
[10]  
ZAPART C, 1999, NEURAL NETWORK WORLD, V5, P393