Proapoptotic p53-interacting protein 53BP2 is induced by UV irradiation but suppressed by p53

被引:30
作者
Lopez, CD
Ao, Y
Rohde, LH
Perez, TD
O'Connor, DJ
Lu, X
Ford, JM
Naumovski, L
机构
[1] Stanford Univ, Dept Med, Div Med Oncol, CCSR, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Med, Sch Med, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Pediat, Sch Med, Div Hematol Oncol, Stanford, CA 94305 USA
[4] St Marys Hosp, Imperial Coll Med, Ludwig Inst Canc Res, London W2 1PG, England
关键词
D O I
10.1128/MCB.20.21.8018-8025.2000
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
p53 is an important mediator of the cellular stress response with roles in cell cycle control, DNA repair, and apoptosis. 53BP2, a p53-interacting protein, enhances p53 transactivation, impedes cell cycle progression, and promotes apoptosis through unknown mechanisms. We now demonstrate that endogenous 53BP2 levels increase following UV irradiation induced DNA damage in a p53-independent manner. In contrast, we found that the presence of a wild-type (but not mutant) p53 gene suppressed 53BP2 steady-state levels in cell Lines with defined p53 genotypes. Likewise, expression of a tetracycline-regulated wild-type p53 cDNA in p53-null fibroblasts caused a reduction in 53BP2 protein levels, However, 53BP2 levels were not reduced if the tetracycline-regulated p53 cDNA was expressed after UV damage in these cells. This suggests that UV damage activates cellular factors that can relieve the p53-mediated suppression of 53BP2 protein. To address the physiologic significance of 53BP2 induction, we utilized stable cell Lines with a ponasterone A-regulated 53BP2 cDNA. Conditional expression of 53BP2 cDNA lowered the apoptotic threshold and decreased clonogenic survival following UV irradiation. Conversely, attenuation of endogenous 53BP2 induction with an antisense oligonucleotide resulted in enhanced clonogenic survival following UV irradiation. These results demonstrate that 53BP2 is a DNA damage-inducible protein that promotes DNA damage-induced apoptosis. Furthermore, 53BP2 expression is highly regulated and involves both p53-dependent and p53-independent mechanisms. Our data provide new insight into 53BP2 function and open new avenues for investigation into the cellular response to genotoxic stress.
引用
收藏
页码:8018 / 8025
页数:8
相关论文
共 42 条
[1]   P53 CONTROLS BOTH THE G(2)/M AND THE G(1) CELL-CYCLE CHECKPOINTS AND MEDIATES REVERSIBLE GROWTH ARREST IN HUMAN FIBROBLASTS [J].
AGARWAL, ML ;
AGARWAL, A ;
TAYLOR, WR ;
STARK, GR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (18) :8493-8497
[2]   Mechanisms of p53-mediated apoptosis [J].
Bates, S ;
Vousden, KH .
CELLULAR AND MOLECULAR LIFE SCIENCES, 1999, 55 (01) :28-37
[3]   Cell surface trafficking of Fas: A rapid mechanism of p53-mediated apoptosis [J].
Bennett, M ;
Macdonald, K ;
Chan, SW ;
Luzio, JP ;
Simari, R ;
Weissberg, P .
SCIENCE, 1998, 282 (5387) :290-293
[4]  
BISCHOFF FZ, 1990, CANCER RES, V50, P7979
[5]   CRYSTAL-STRUCTURE OF A P53 TUMOR-SUPPRESSOR DNA COMPLEX - UNDERSTANDING TUMORIGENIC MUTATIONS [J].
CHO, YJ ;
GORINA, S ;
JEFFREY, PD ;
PAVLETICH, NP .
SCIENCE, 1994, 265 (5170) :346-355
[6]  
DELSAL G, 1995, MOL CELL BIOL, V15, P7152
[7]   A matter of life and cell death [J].
Evan, G ;
Littlewood, T .
SCIENCE, 1998, 281 (5381) :1317-1322
[8]   Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts [J].
Ford, JM ;
Hanawalt, PC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (44) :28073-28080
[9]   LI-FRAUMENI SYNDROME FIBROBLASTS HOMOZYGOUS FOR P53 MUTATIONS ARE DEFICIENT IN GLOBAL DNA-REPAIR BUT EXHIBIT NORMAL TRANSCRIPTION-COUPLED REPAIR AND ENHANCED UV RESISTANCE [J].
FORD, JM ;
HANAWALT, PC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (19) :8876-8880
[10]   Functions of the MDM2 oncoprotein [J].
Freedman, DA ;
Wu, L ;
Levine, AJ .
CELLULAR AND MOLECULAR LIFE SCIENCES, 1999, 55 (01) :96-107