Weighted counting of solutions to sparse systems of equations

被引:19
作者
Barvinok, Alexander [1 ]
Regts, Guus [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Amsterdam, Korteweg de Vries Inst Math, POB 94248, NL-1090 GE Amsterdam, Netherlands
关键词
GRAPH; HARDNESS; NUMBER;
D O I
10.1017/S0963548319000105
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given complex numbers w(1),,w(n), we define the weight w(X) of a set X of 01 vectors as the sum of over all vectors (x(1),,x(n)) in X. We present an algorithm which, for a set X defined by a system of homogeneous linear equations with at most r variables per equation and at most c equations per variable, computes w(X) within relative error epsilon > 0 in (rc)O(lnn-ln epsilon) time provided vertical bar W-j vertical bar <= beta(r root c)(-1) for an absolute constant beta > 0 and all j = 1,,n. A similar algorithm is constructed for computing the weight of a linear code over . Applications include counting weighted perfect matchings in hypergraphs, counting weighted graph homomorphisms, computing weight enumerators of linear codes with sparse code generating matrices, and computing the partition functions of the ferromagnetic Potts model at low temperatures and of the hard-core model at high fugacity on biregular bipartite graphs.
引用
收藏
页码:696 / 719
页数:24
相关论文
共 25 条
[1]  
[Anonymous], 1992, WADSWORTH BROOKS COL
[2]  
Ausiello Giorgio, 1999, COMPLEXITY APPROXIMA, DOI DOI 10.1007/978-3-642-58412-1
[3]  
Barvinok A., 2018, ISRAEL J MATH
[4]  
Barvinok Alexander, 2017, A Journey Through Discrete Mathematics, P135
[5]  
Barvinok Alexander I., 2016, Combinatorics and complexity of partition functions, V30
[6]   INHERENT INTRACTABILITY OF CERTAIN CODING PROBLEMS [J].
BERLEKAMP, ER ;
MCELIECE, RJ ;
VANTILBORG, HCA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (03) :384-386
[7]   Left and right convergence of graphs with bounded degree [J].
Borgs, Christian ;
Chayes, Jennifer ;
Kahn, Jeff ;
Lovasz, Laszlo .
RANDOM STRUCTURES & ALGORITHMS, 2013, 42 (01) :1-28
[8]   THE HARDNESS OF DECODING LINEAR CODES WITH PREPROCESSING [J].
BRUCK, J ;
NAOR, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (02) :381-385
[9]  
Bukh Boris, 2015, COMMUNICATION
[10]   #BIS-hardness for 2-spin systems on bipartite bounded degree graphs in the tree non-uniqueness region [J].
Cai, Jin-Yi ;
Galanis, Andreas ;
Goldberg, Leslie Ann ;
Guo, Heng ;
Jerrum, Mark ;
Stefankovic, Daniel ;
Vigoda, Eric .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2016, 82 (05) :690-711