Identification of epileptogenic networks from dense EEG: A model-based study

被引:0
作者
Hassan, M. [1 ]
Mheich, A. [1 ]
Biraben, A. [2 ]
Merlet, I [1 ]
Wendling, F. [1 ]
机构
[1] Univ Rennes 1, UMR Inserm, LTSI, F-35014 Rennes, France
[2] CHU, Dept Neurol, Rennes, France
来源
2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2015年
关键词
CONNECTIVITY; SIGNALS; MEG;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Epilepsy is a network disease. Identifying the epileptogenic networks from noninvasive recordings is a challenging issue. In this context, M/EEG source connectivity is a promising tool to identify brain networks with high temporal and spatial resolution. In this paper, we analyze the impact of the two main factors that intervene in EEG source connectivity processing: i) the algorithm used to solve the EEG inverse problem and ii) the method used to measure the functional connectivity. We evaluate three inverse solutions algorithms (dSPM, wMNE and cMEM) and three connectivity measures (r(2), h(2) and MI) on data simulated from a combined biophysical/physiological model able to generate realistic interictal epileptic spikes reflected in scalp EEG. The performance criterion used here is the similarity between the network identified by each of the inverse/connectivity combination and the original network used in the source model. Results show that the choice of the combination has a high impact on the identified network. Results suggest also that nonlinear methods (nonlinear correlation coefficient and mutual information) for measuring the connectivity are more efficient than the linear one (the cross correlation coefficient). The dSPM as inverse solution shows the lowest performance compared to cMEM and wMNE.
引用
收藏
页码:5610 / 5613
页数:4
相关论文
共 14 条
[1]   How do brain tumors alter functional connectivity? A magnetoencephalography study [J].
Bartolomei, F ;
Bosma, I ;
Mein, M ;
Baayen, JC ;
Reijneveld, JC ;
Postma, TJ ;
Heimans, JJ ;
van Dijk, BW ;
de Munck, JC ;
de Jongh, A ;
Cover, KS ;
Stam, CJ .
ANNALS OF NEUROLOGY, 2006, 59 (01) :128-138
[2]   Automatic lateralization of temporal lobe epilepsy based on scalp EEG [J].
Caparos, M. ;
Louis-Dorr, V. ;
Wendling, F. ;
Maillard, L. ;
Wolf, D. .
CLINICAL NEUROPHYSIOLOGY, 2006, 117 (11) :2414-2423
[3]   MEG Source Localization of Spatially Extended Generators of Epileptic Activity: Comparing Entropic and Hierarchical Bayesian Approaches [J].
Chowdhury, Rasheda Arman ;
Lina, Jean Marc ;
Kobayashi, Eliane ;
Grova, Christophe .
PLOS ONE, 2013, 8 (02)
[4]   A physiologically plausible spatio-temporal model for EEG signals recorded with intracerebral electrodes in human partial epilepsy [J].
Cosandier-Rimele, Delphine ;
Badier, Jean-Michel ;
Chauvel, Patrick ;
Wendling, Fabrice .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (03) :380-388
[5]   The hubs of the human connectome are generally implicated in the anatomy of brain disorders [J].
Crossley, Nicolas A. ;
Mechelli, Andrea ;
Scott, Jessica ;
Carletti, Francesco ;
Fox, Peter T. ;
McGuire, Philip ;
Bullmore, Edward T. .
BRAIN, 2014, 137 :2382-2395
[6]   Source Connectivity Analysis from MEG and its Application to Epilepsy Source Localization [J].
Dai, Yakang ;
Zhang, Wenbo ;
Dickens, Deanna L. ;
He, Bin .
BRAIN TOPOGRAPHY, 2012, 25 (02) :157-166
[7]   Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity [J].
Dale, AM ;
Liu, AK ;
Fischl, BR ;
Buckner, RL ;
Belliveau, JW ;
Lewine, JD ;
Halgren, E .
NEURON, 2000, 26 (01) :55-67
[8]   EEG Source Connectivity Analysis: From Dense Array Recordings to Brain Networks [J].
Hassan, Mahmoud ;
Dufor, Olivier ;
Merlet, Isabelle ;
Berrou, Claude ;
Wendling, Fabrice .
PLOS ONE, 2014, 9 (08)
[10]   A new algorithm for spatiotemporal analysis of brain functional connectivity [J].
Mheich, A. ;
Hassan, M. ;
Khalil, M. ;
Berrou, C. ;
Wendling, F. .
JOURNAL OF NEUROSCIENCE METHODS, 2015, 242 :77-81