Melatonin, Noncoding RNAs, Messenger RNA Stability and Epigenetics-Evidence, Hints, Gaps and Perspectives

被引:47
作者
Hardeland, Ruediger [1 ]
机构
[1] Univ Gottingen, Johann Friedrich Blumenbach Inst Zool & Anthropol, D-37073 Gottingen, Germany
关键词
circadian; DNA methylation; histone acetylation; histone methylation; lncRNA; melatonin; miRNA; piRNA; RNA deadenylases; NITRIC-OXIDE SYNTHASE; CIRCADIAN-REGULATED GENE; MESENCHYMAL STEM-CELLS; NF-KAPPA-B; DNA METHYLATION; PPAR-GAMMA; OXIDATIVE STRESS; BREAST-CANCER; MITOCHONDRIAL DYSFUNCTION; MOLECULAR-MECHANISMS;
D O I
10.3390/ijms151018221
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Melatonin is a highly pleiotropic regulator molecule, which influences numerous functions in almost every organ and, thus, up- or down-regulates many genes, frequently in a circadian manner. Our understanding of the mechanisms controlling gene expression is actually now expanding to a previously unforeseen extent. In addition to classic actions of transcription factors, gene expression is induced, suppressed or modulated by a number of RNAs and proteins, such as miRNAs, lncRNAs, piRNAs, antisense transcripts, deadenylases, DNA methyltransferases, histone methylation complexes, histone demethylases, histone acetyltransferases and histone deacetylases. Direct or indirect evidence for involvement of melatonin in this network of players has originated in different fields, including studies on central and peripheral circadian oscillators, shift work, cancer, inflammation, oxidative stress, aging, energy expenditure/obesity, diabetes type 2, neuropsychiatric disorders, and neurogenesis. Some of the novel modulators have also been shown to participate in the control of melatonin biosynthesis and melatonin receptor expression. Future work will need to augment the body of evidence on direct epigenetic actions of melatonin and to systematically investigate its role within the network of oscillating epigenetic factors. Moreover, it will be necessary to discriminate between effects observed under conditions of well-operating and deregulated circadian clocks, and to explore the possibilities of correcting epigenetic malprogramming by melatonin.
引用
收藏
页码:18221 / 18252
页数:32
相关论文
共 198 条
[1]   RNA-sequencing of the brain transcriptome implicates dysregulation of neuroplasticity, circadian rhythms and GTPase binding in bipolar disorder [J].
Akula, N. ;
Barb, J. ;
Jiang, X. ;
Wendland, J. R. ;
Choi, K. H. ;
Sen, S. K. ;
Hou, L. ;
Chen, D. T. W. ;
Laje, G. ;
Johnson, K. ;
Lipska, B. K. ;
Kleinman, J. E. ;
Corrada-Bravo, H. ;
Detera-Wadleigh, S. ;
Munson, P. J. ;
McMahon, F. J. .
MOLECULAR PSYCHIATRY, 2014, 19 (11) :1179-1185
[2]   miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock [J].
Alvarez-Saavedra, Matias ;
Antoun, Ghadi ;
Yanagiya, Akiko ;
Oliva-Hernandez, Reynaldo ;
Cornejo-Palma, Daniel ;
Perez-Iratxeta, Carolina ;
Sonenberg, Nahum ;
Cheng, Hai-Ying M. .
HUMAN MOLECULAR GENETICS, 2011, 20 (04) :731-751
[3]  
Anisimov Vladimir N, 2012, Curr Aging Sci, V5, P170
[4]   Osteoinductive Small Molecules: Growth Factor Alternatives for Bone Tissue Engineering [J].
Aravamudhan, Aja ;
Ramos, Daisy M. ;
Nip, Jonathan ;
Subramanian, Aditi ;
James, Roshan ;
Harmon, Matthew D. ;
Yu, Xiaojun ;
Kumbar, Sangamesh G. .
CURRENT PHARMACEUTICAL DESIGN, 2013, 19 (19) :3420-3428
[5]   Nanomolar melatonin enhances nNOS expression and controls HaCaT-cells bioenergetics [J].
Arese, Marzia ;
Magnifico, Maria Chiara ;
Mastronicola, Daniela ;
Altieri, Fabio ;
Grillo, Caterina ;
Blanck, Thomas J. J. ;
Sarti, Paolo .
IUBMB LIFE, 2012, 64 (03) :251-258
[6]   SIRT1 regulates circadian clock gene expression through PER2 deacetylation [J].
Asher, Gad ;
Gatfield, David ;
Stratmann, Markus ;
Reinke, Hans ;
Dibner, Charna ;
Kreppel, Florian ;
Mostoslavsky, Raul ;
Alt, Frederick W. ;
Schibler, Ueli .
CELL, 2008, 134 (02) :317-328
[7]   Present and future of anti-ageing epigenetic diets [J].
Bacalini, Maria Giulia ;
Friso, Simonetta ;
Olivieri, Fabiola ;
Pirazzini, Chiara ;
Giuliani, Cristina ;
Capri, Miriam ;
Santoro, Aurelia ;
Franceschi, Claudio ;
Garagnani, Paolo .
MECHANISMS OF AGEING AND DEVELOPMENT, 2014, 136 :101-115
[8]   A murine gene with circadian expression revealed by transposon insertion: self-sustained rhythmicity in the liver and the photoreceptors [J].
Barbot, W ;
Wasowicz, M ;
Dupressoir, A ;
Versaux-Botteri, C ;
Heidmann, T .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2002, 1576 (1-2) :81-91
[9]   The Time of Metabolism: NAD+, SIRT1, and the Circadian Clock [J].
Bellet, M. M. ;
Orozco-Solis, R. ;
Sahar, S. ;
Eckel-Mahan, K. ;
Sassone-Corsi, P. .
METABOLISM AND DISEASE, 2011, 76 :31-38
[10]   The light-induced transcriptome of the zebrafish pineal gland reveals complex regulation of the circadian clockwork by light [J].
Ben-Moshe, Zohar ;
Alon, Shahar ;
Mracek, Philipp ;
Faigenbloom, Lior ;
Tovin, Adi ;
Vatine, Gad D. ;
Eisenberg, Eli ;
Foulkes, Nicholas S. ;
Gothilf, Yoav .
NUCLEIC ACIDS RESEARCH, 2014, 42 (06) :3750-3767