On the approximation in the smoothed finite element method (SFEM)

被引:71
作者
Bordas, Stephane P. A. [1 ]
Natarajan, Sundararajan [1 ]
机构
[1] Univ Glasgow, Dept Civil Engn, Glasgow G12 8LT, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
smoothed finite element method; boundary integration; Wachspress interpolants; strain smoothing; rational basis finite elements; SFEM; isoparametric; non-mapped shape functions; distorted meshes; INTERPOLANTS;
D O I
10.1002/nme.2713
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This letter aims at resolving the issues raised in the recent short communication (Int. J. Numer Meth. Engng 2008; 76(8):1285-1295. DOI: 10.1002/nme.2460) and answered by (Int. J. Numer Meth. Engng 2009; DOI: 10.1002/nme.2587) by proposing a systematic approximation scheme based on non-mapped shape functions, which both allows to fully exploit the unique advantages of the smoothed finite element method (SFEM) (Comput. Mech. 2007; 39(6):859-877. DOI: 10.1007/s00466-0060075-4; Commun. Numer Meth. Engng 2009: 25(1):19-34. DOI: 10.1002/cnm.1098; Int. J. Numer Meth. Engng 2007, 71(8):902-930; Comput. Meth. Appl. Mech. Engng 2008, 198(2):165-177. DOI: 10.1016/j.cma.2008.05.029; Comput. Meth. Appl. Mech. Engng 2007; submitted; Int. J. Numer Meth. Engng 2008; 74(2):175-208. DOI: 10.1002/nme.2146; Comput. Meth. Appl. Mech. Engng 2008; 197 (13-16):1184-1203. DOI: 10.1016/j.cma.2007.10.008) and resolve the existence, linearity and positivity deficiencies pointed out in (Int. J. Numer Meth. Engng 2008; 76(8):1285-1295). We show that Wachspress interpolants (A Rational Basis for Function Approximation. Academic Press, Inc.: New York, 1975) computed in the physical coordinate system are very well suited to the SFEM, especially when elements are heavily distorted (obtuse interior angles). The proposed approximation leads to results that are almost identical to those of the SFEM initially proposed in (Comput. Mech. 2007; 39(6):859-877. DOI: 10.1007/s00466-006-0075-4). These results suggest that the proposed approximation scheme forms a strong and rigorous basis for the construction of SFEMs. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:660 / 670
页数:11
相关论文
共 15 条
[1]   Strain smoothing in FEM and XFEM [J].
Bordas, Stephane P. A. ;
Rabczuk, Timon ;
Nguyen-Xuan, Hung ;
Nguyen, Vinh Phu ;
Natarajan, Sundararajan ;
Bog, Tino ;
Do Minh Quan ;
Nguyen Vinh Hiep .
COMPUTERS & STRUCTURES, 2010, 88 (23-24) :1419-1443
[2]   Some recent improvements in meshfree methods for incompressible finite elasticity boundary value problems with contact [J].
Chen, JS ;
Wang, HP ;
Yoon, S ;
You, Y .
COMPUTATIONAL MECHANICS, 2000, 25 (2-3) :137-156
[4]   Theoretical aspects of the smoothed finite element method (SFEM) [J].
Liu, G. R. ;
Nguyen, T. T. ;
Dai, K. Y. ;
Lam, K. Y. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 71 (08) :902-930
[5]   A smoothed finite element method for mechanics problems [J].
Liu, G. R. ;
Dai, K. Y. ;
Nguyen, T. T. .
COMPUTATIONAL MECHANICS, 2007, 39 (06) :859-877
[6]   On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM) [J].
Liu, G. R. ;
Nguyen-Thoi, T. ;
Nguyen-Xuan, H. ;
Dai, K. Y. ;
Lam, K. Y. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 77 (13) :1863-1869
[7]  
NGUYEN XH, 2007, COMPUTER METHO UNPUB
[8]  
NGUYEN XH, 2009, COMMUNICATIONS NUMER, V25, P19, DOI DOI 10.1002/CNM.1098
[9]   A smoothed finite element method for shell analysis [J].
Nguyen-Thanh, N. ;
Rabczuk, Timon ;
Nguyen-Xuan, H. ;
Bordas, Stephane P. A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 198 (02) :165-177
[10]   A smoothed finite element method for plate analysis [J].
Nguyen-Xuan, H. ;
Rabczuk, T. ;
Bordas, Stephane ;
Debongnie, J. F. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (13-16) :1184-1203