FINITENESS OF HIGHER CODIMENSIONAL DISJOINT MINIMAL GRAPHS

被引:0
作者
Dong Yuxin [1 ]
Ji Qingchun [1 ]
Zhang Wei [2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
关键词
area-decreasing; volume estimate; disjoint minimal graph;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We estimate the number of disjoint open subsets in R-n, which can support area-decreasing minimal graphs. This result generalizes the related results of Li-Wang and Tkachev for minimal hypersurfaces to higher codimensional case.
引用
收藏
页码:107 / 112
页数:6
相关论文
共 6 条
[1]  
Li P, 2001, MATH RES LETT, V8, P771
[2]   The uniqueness of the helicoid [J].
Meeks, WH ;
Rosenberg, H .
ANNALS OF MATHEMATICS, 2005, 161 (02) :727-758
[3]   Disjoint minimal graphs [J].
Tkachev, Vladimir G. .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 35 (02) :139-155
[4]   Interior gradient bounds for solutions to the minimal surface system [J].
Wang, MT .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (04) :921-934
[5]   The Dirichlet problem for the minimal surface system in arbitrary dimensions and codimensions [J].
Wang, MT .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (02) :267-281
[6]   On graphic Bernstein type results in higher codimension [J].
Wang, MT .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (01) :265-271