Numerical solution of functional differential, integral and integro-differential equations

被引:66
作者
Rashed, MT [1 ]
机构
[1] Sohag Univ, Fac Sci, Dept Math, Sohag 82516, Egypt
关键词
Lagrange interpolation; functional integral equations of the second kind; functional integro-differential equations; functional differential equations of first or second order; Chebyshev interpolation;
D O I
10.1016/j.amc.2003.08.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes a numerical method, based on Lagrange interpolation and Chebyshev interpolation, to treat functional integral equations of Volterra type and Fredholm type. Also, the method can be extended to functional differential and integro-differential equations. Various numerical examples are treated. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:485 / 492
页数:8
相关论文
共 50 条
[41]   Numerical treatment of second kind Fredholm integral equations systems on bounded intervals [J].
De Bonis, M. C. ;
Laurita, C. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 217 (01) :64-87
[42]   Numerical methods for Fredholm integral equations with singular right-hand sides [J].
Fermo, L. ;
Russo, M. G. .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 33 (03) :305-330
[43]   Numerical methods for Cauchy singular integral equations in spaces of weighted continuous functions [J].
Mastroianni, G ;
Russo, MG ;
Themistoclakis, W .
RECENT ADVANCES IN OPERATOR THEORY AND ITS APPLICATIONS: THE ISRAEL GOHBERG ANNIVERSARY VOLUME, 2005, 160 :311-336
[44]   Adaptive Piecewise Poly-Sinc Methods for Ordinary Differential Equations [J].
Khalil, Omar ;
El-Sharkawy, Hany ;
Youssef, Maha ;
Baumann, Gerd .
ALGORITHMS, 2022, 15 (09)
[45]   Well-conditioned matrices for numerical treatment of Fredholm integral equations of the second kind [J].
Mastroianni, Giuseppe ;
Milovanovic, Gradimir V. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (11-12) :995-1011
[46]   SOME NODES MATRICES APPEARING IN THE NUMERICAL-ANALYSIS FOR SINGULAR INTEGRAL-EQUATIONS [J].
MASTROIANNI, G ;
PROSSDORF, S .
BIT, 1994, 34 (01) :120-128
[47]   Some numerical methods for second-kind Fredholm integral equations on the real semiaxis [J].
Mastroianni, Giuseppe ;
Milovanovic, Gradimir V. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (04) :1046-1066
[48]   Initial value problem for second-order random fuzzy differential equations [J].
Ho Vu ;
Le Si Dong .
ADVANCES IN DIFFERENCE EQUATIONS, 2015, :1-23
[49]   Numerical treatment of boundary value problems by solving a system of second kind Fredholm integral equations [J].
Frammartino, Carmelina .
CALCOLO, 2013, 50 (02) :123-140
[50]   Numerical treatment of boundary value problems by solving a system of second kind Fredholm integral equations [J].
Carmelina Frammartino .
Calcolo, 2013, 50 :123-140