Numerical solution of functional differential, integral and integro-differential equations

被引:65
作者
Rashed, MT [1 ]
机构
[1] Sohag Univ, Fac Sci, Dept Math, Sohag 82516, Egypt
关键词
Lagrange interpolation; functional integral equations of the second kind; functional integro-differential equations; functional differential equations of first or second order; Chebyshev interpolation;
D O I
10.1016/j.amc.2003.08.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes a numerical method, based on Lagrange interpolation and Chebyshev interpolation, to treat functional integral equations of Volterra type and Fredholm type. Also, the method can be extended to functional differential and integro-differential equations. Various numerical examples are treated. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:485 / 492
页数:8
相关论文
共 50 条
[21]   Solving the multigroup integro-differential equation of the neutron diffusion kinetics in 3D-Cartesian geometry [J].
Quintero-Leyva, Barbaro .
ANNALS OF NUCLEAR ENERGY, 2016, 87 :282-289
[22]   Numerical Solutions of Fuzzy Fractional Delay Differential Equations [J].
Padmapriya, V ;
Kaliyappan, M. ;
Manivannan, A. .
INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2020, 20 (03) :247-254
[23]   On the numerical solution of integral equations of the second kind over infinite intervals [J].
Rahmoune, Azedine .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 66 (1-2) :129-148
[24]   On the numerical solution of integral equations of the second kind over infinite intervals [J].
Azedine Rahmoune .
Journal of Applied Mathematics and Computing, 2021, 66 :129-148
[25]   Numerical solution of systems of Cauchy singular integral equations with constant coefficients [J].
De Bonis, Maria Carmela ;
Laurita, Concetta .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) :1391-1410
[26]   Numerical solution of fuzzy Fredholm integral equations by the Lagrange interpolation based on the extension principle [J].
M. A. Fariborzi Araghi ;
N. Parandin .
Soft Computing, 2011, 15 :2449-2456
[27]   Using Lagrange Interpolation for Numerical Solution of Two-Dimensional Fredholm Integral Equations [J].
Farahmand, Gh. R. ;
Parandin, N. ;
Branch, Kermanshah .
JOURNAL OF MATHEMATICAL EXTENSION, 2023, 17 (12)
[28]   Numerical solution of fuzzy Fredholm integral equations by the Lagrange interpolation based on the extension principle [J].
Araghi, M. A. Fariborzi ;
Parandin, N. .
SOFT COMPUTING, 2011, 15 (12) :2449-2456
[29]   A New Numerical Approach for the Analysis of Variable Fractal and Fractional Order Differential Equations [J].
Jena P. ;
Mohapatra S.N. ;
Mishra S.R. .
International Journal of Applied and Computational Mathematics, 2022, 8 (4)
[30]   Numerical solution of integral equations by using combination of Spline-collocation method and Lagrange interpolation [J].
Maleknejad, K. ;
Derili, H. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (02) :1235-1244