Solving generalized pantograph equations by shifted orthonormal Bernstein polynomials

被引:44
作者
Javadi, Shahnam [1 ]
Babolian, Esmail [1 ]
Taheri, Zeinab [1 ]
机构
[1] Kharazmi Univ, Fac Math Sci & Comp, 50 Taleghani Ave, Tehran 1561836314, Iran
关键词
Shifted orthonormal Bernstein polynomials (SOBPs); Operational matrices; Pantograph equations; Condition numbers; Error analysis; DELAY-DIFFERENTIAL EQUATIONS; RUNGE-KUTTA METHODS; LEG THETA-METHODS; NUMERICAL-SOLUTION; OPERATIONAL MATRIX; COLLOCATION METHOD; STABILITY ANALYSIS;
D O I
10.1016/j.cam.2016.02.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce Shifted Orthonormal Bernstein Polynomials (SOBPs) and derive the operational matrices of integration and delays for these polynomials. Then, we apply them to convert the pantograph equations to a system of linear equations. An important property of this method is that the condition number of the coefficient matrix of the system is small which confirms that our method is stable. Error analysis and comparison with other methods are given to confirm the validity, efficiency and applicability of the proposed method. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 40 条
[1]  
Ajello W. G., 1992, SIAM J APPL MATH, V52, P855, DOI DOI 10.1137/0152048
[2]  
Alipour M, 2013, J MATH COMPUT SCI-JM, V6, P292
[3]  
[Anonymous], ARXIV14042293
[4]  
[Anonymous], 1996, INT J MATH EDUC SCI, DOI DOI 10.1080/0020739960270606
[5]   Numerical solution of KdV equation using modified Bernstein polynomials [J].
Bhatta, DD ;
Bhatti, MI .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 174 (02) :1255-1268
[6]   Solutions of differential equations in a Bernstein polynomial basis [J].
Bhatti, M. Idrees ;
Bracken, P. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) :272-280
[7]  
BUHMANN M, 1993, MATH COMPUT, V60, P575, DOI 10.1090/S0025-5718-1993-1176707-2
[8]  
Derfel G., 1996, Eur. J. Appl. Math, V7, P511, DOI [10.1017/s0956792500002527, DOI 10.1017/S0956792500002527]
[9]   A new Jacobi rational-Gauss collocation method for numerical solution of generalized pantograph equations [J].
Doha, E. H. ;
Bhrawy, A. H. ;
Baleanu, D. ;
Hafez, R. M. .
APPLIED NUMERICAL MATHEMATICS, 2014, 77 :43-54
[10]   A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order [J].
Doha, E. H. ;
Bhrawy, A. H. ;
Ezz-Eldien, S. S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (05) :2364-2373