Perfect Domination, Roman Domination and Perfect Roman Domination in Lexicographic Product Graphs

被引:0
作者
Cabrera Martinez, A. [1 ]
Garcia-Gomez, C. [1 ]
Rodriguez-Velazquez, J. A. [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, Tarragona 43007, Spain
关键词
Roman domination; perfect domination; perfect Roman domination; lexicographic product; NUMBER;
D O I
10.3233/FI-222108
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The aim of this paper is to obtain closed formulas for the perfect domination number, the Roman domination number and the perfect Roman domination number of lexicographic product graphs. We show that these formulas can be obtained relatively easily for the case of the first two parameters. The picture is quite different when it concerns the perfect Roman domination number. In this case, we obtain general bounds and then we give sufficient and/or necessary conditions for the bounds to be achieved. We also discuss the case of perfect Roman graphs and we characterize the lexicographic product graphs where the perfect Roman domination number equals the Roman domination number.
引用
收藏
页码:201 / 220
页数:20
相关论文
共 34 条
[1]   TOTAL ROMAN DOMINATION IN GRAPHS [J].
Ahangar, Hossein Abdollahzadeh ;
Henning, Michael A. ;
Samodivkin, Vladimir ;
Yero, Ismael G. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) :501-517
[2]  
[Anonymous], 1998, FUNDAMENTALS DOMINAT, DOI 10.1201/9781482246582
[3]  
Arriola B.H., 2014, Appl. Math. Sci., V8, P1521, DOI 10.12988/ams.2014.4136
[4]  
Banerjee S, 2019, THEORET COMPUT SCI, V7, P797, DOI DOI 10.3390/MATH7100997
[5]   From Italian domination in lexicographic product graphs to w-domination in graphs [J].
Cabrera Martinez, Abel ;
Estrada-Moreno, Alejandro ;
Alberto Rodriguez-Velazquez, Juan .
ARS MATHEMATICA CONTEMPORANEA, 2022, 22 (01)
[6]   Total Protection of Lexicographic Product Graphs [J].
Cabrera Martinez, Abel ;
Alberto Rodriguez-Velazquez, Juan .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (03) :967-984
[7]   Double domination in lexicographic product graphs [J].
Cabrera Martinez, Abel ;
Cabrera Garcia, Suitberto ;
Rodriguez-Velazquez, J. A. .
DISCRETE APPLIED MATHEMATICS, 2020, 284 :290-300
[8]   Total Roman domination in the lexicographic product of graphs [J].
Campanelli, Nicolas ;
Kuziak, Dorota .
DISCRETE APPLIED MATHEMATICS, 2019, 263 :88-95
[9]  
Clark L., 1993, J. Combin. Math. Combin. Comput, V14, P173
[10]  
Cockayne E.J., 1993, J COMB INFO SYSTEM S, V18, P136