A PRIORI ESTIMATES OF THE DEGENERATE MONGE-AMPERE EQUATION ON KAHLER MANIFOLDS OF NON-NEGATIVE BISECTIONAL CURVATURE

被引:1
作者
Picard, Sebastien [1 ]
机构
[1] McGill Univ, Dept Math, Montreal, PQ H3A 2K6, Canada
关键词
DIRICHLET PROBLEM; SPACE;
D O I
10.4310/MRL.2013.v20.n6.a12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The regularity theory of the degenerate complex Monge-Ampere equation is studied. The equation is considered on a closed compact Kahler manifold (M, g) with non-negative orthogonal bisectional curvature of dimension m. Given a solution phi of the degenerate complex Monge-Ampere equation det(gi (j) over bar vertical bar phi i (j) over bar) = f det(gi (j) over bar), it is shown that the Laplacian of phi can be controlled by a constant depending on (M, g), sup f, and inf (M) Delta f(1/(m-1)).
引用
收藏
页码:1145 / 1156
页数:12
相关论文
共 18 条
[1]  
[Anonymous], 1999, NO CALIFORNIA SYMPLE
[2]  
Aubin T, 1976, C.R. Acad. Sci. Paris, serie A, V283, P119
[3]   DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPERE EQUATION [J].
BEDFORD, E ;
TAYLOR, BA .
INVENTIONES MATHEMATICAE, 1976, 37 (01) :1-44
[4]   Regularity of the degenerate Monge-Ampere equation on compact Kahler manifolds [J].
Blocki, Z .
MATHEMATISCHE ZEITSCHRIFT, 2003, 244 (01) :153-161
[5]   A gradient estimate in the Calabi-Yau theorem [J].
Blocki, Zbigniew .
MATHEMATISCHE ANNALEN, 2009, 344 (02) :317-327
[6]   Monge-Ampere equations in big cohomology classes [J].
Boucksom, Sebastien ;
Eyssidieux, Philippe ;
Guedj, Vincent ;
Zeriahi, Ahmed .
ACTA MATHEMATICA, 2010, 205 (02) :199-262
[7]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .2. COMPLEX MONGE-AMPERE, AND UNIFORMLY ELLIPTIC, EQUATIONS [J].
CAFFARELLI, L ;
KOHN, JJ ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (02) :209-252
[8]  
Chen XX, 2000, J DIFFER GEOM, V56, P189
[9]  
Esyssidieux P., 2009, J AM MATH SOC, V22, P607
[10]   An extension of Mok's theorem on the generalized Frankel conjecture [J].
Gu HuiLing ;
Zhang ZhuHong .
SCIENCE CHINA-MATHEMATICS, 2010, 53 (05) :1253-1264