Formation of a crystal nucleus from liquid

被引:341
作者
Kawasaki, Takeshi [1 ]
Tanaka, Hajime [1 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo 1538505, Japan
关键词
bond orientational order; glass transition; hard; sphere liquid; metastable liquid; HARD COLLOIDAL SPHERES; DENSITY-FLUCTUATIONS; FREE-ENERGY; NUCLEATION; CRYSTALLIZATION; SUSPENSIONS; KINETICS; SURFACE; GLASS; SOLIDIFICATION;
D O I
10.1073/pnas.1001040107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Crystallization is one of the most fundamental nonequilibrium phenomena universal to a variety of materials. It has so far been assumed that a supercooled liquid is in a "homogeneous disordered state" before crystallization. Contrary to this common belief, we reveal that a supercooled colloidal liquid is actually not homogeneous, but has transient medium-range structural order. We find that nucleation preferentially takes place in regions of high structural order via wetting effects, which reduce the crystal-liquid interfacial energy significantly and thus promotes crystal nucleation. This novel scenario provides a clue to solving a long-standing mystery concerning a large discrepancy between the rigorous numerical estimation of the nucleation rate on the basis of the classical nucleation theory and the experimentally observed ones. Our finding may shed light not only on the mechanism of crystal nucleation, but also on the fundamental nature of a supercooled liquid state.
引用
收藏
页码:14036 / 14041
页数:6
相关论文
共 36 条
[1]   CLASSICAL GROWTH OF HARD-SPHERE COLLOIDAL CRYSTALS [J].
ACKERSON, BJ ;
SCHATZEL, K .
PHYSICAL REVIEW E, 1995, 52 (06) :6448-6460
[2]   SHOULD ALL CRYSTALS BE BCC - LANDAU THEORY OF SOLIDIFICATION AND CRYSTAL NUCLEATION [J].
ALEXANDER, S ;
MCTAGUE, J .
PHYSICAL REVIEW LETTERS, 1978, 41 (10) :702-705
[3]   Insights into phase transition kinetics from colloid science [J].
Anderson, VJ ;
Lekkerkerker, HNW .
NATURE, 2002, 416 (6883) :811-815
[4]  
[Anonymous], 1897, Z. f.ur. Physikalische Chem. Bd, DOI DOI 10.1515/ZPCH-1897-2233
[5]   Geometrical structure of disordered sphere packings [J].
Aste, T ;
Saadatfar, M ;
Senden, TJ .
PHYSICAL REVIEW E, 2005, 71 (06)
[6]   Numerical simulation of crystal nucleation in colloids [J].
Auer, S ;
Frenkel, D .
ADVANCED COMPUTER SIMULATION APPROACHES FOR SOFT MATTER SCIENCES I, 2005, 173 :149-208
[7]   Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy [J].
Auer, S ;
Frenkel, D .
NATURE, 2001, 413 (6857) :711-713
[8]   Prediction of absolute crystal-nucleation rate in hard-sphere colloids [J].
Auer, S ;
Frenkel, D .
NATURE, 2001, 409 (6823) :1020-1023
[9]  
Cheng Z., 2001, PHYS REV LETT, V88, DOI DOI 10.1103/PHYSREVLETT.88.015501
[10]   Direct calculation of the hard-sphere crystal/melt interfacial free energy [J].
Davidchack, RL ;
Laird, BB .
PHYSICAL REVIEW LETTERS, 2000, 85 (22) :4751-4754