EXISTENCE OF SOLUTIONS FOR A CLASS OF DEGENERATE ELLIPTIC EQUATIONS IN P(X)-SOBOLEV SPACES

被引:3
作者
Aharrouch, Benali [1 ]
Boukhrij, Mohamed [1 ]
Bennouna, Jaouad [1 ]
机构
[1] Univ Fez, Fac Sci Dhar El Mahraz, Lab LAMA, Dept Math, BP 1796, Atlas Fez, Morocco
关键词
Weak and entropy solutions; degenerate elliptic equations; Sobolev spaces with variable exponent; Stampacchia methods; UNILATERAL PROBLEMS;
D O I
10.12775/TMNA.2017.065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Dirichlet problem for degenerate elliptic equations of the form -div /g=a/(x, u, del u) + H(x,u, del u) = f in /g=W/, where /g=a/(x,u, del u) is allowed to degenerate with respect to the unknown u, and H(x, u, del u) is a nonlinear term without sign condition. Under suitable conditions on a and H, we prove the existence of bounded and unbounded solution for a datum f /m=elem/ L-m, with 1 /m=le/ m /m=le//m=infty/.
引用
收藏
页码:389 / 411
页数:23
相关论文
共 22 条
[1]   Existence results for some unilateral problems without sign condition with obstacle free in Orlicz spaces [J].
Aharouch, L. ;
Benkirane, A. ;
Rhoudaf, M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (08) :2362-2380
[2]   Existence and uniqueness of solutions of unilateral problems in Orlicz spaces [J].
Aharouch, L. ;
Bennouna, J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (9-10) :3553-3565
[3]  
[Anonymous], 1969, Quelques methodes de resolution des problemes aux limites non lineaires
[4]  
[Anonymous], 1965, ANN I FOURIER, DOI DOI 10.5802/AIF.204
[5]  
[Anonymous], 1998, J. Gansu Educ. Coll
[6]  
Azroul E., 2013, Electron. J. Differ. Equ, V68, P1
[7]  
Benboubker M. B., 2011, ELECTRON J DIFFER EQ, V62, P1
[8]  
Bendahmane M., 2015, Moroccan J Pure Appl Anal, V1, P108, DOI [10.7603/s40956-015-0008-3, DOI 10.7603/S40956-015-0008-3]
[9]   Renormalized solutions for nonlinear elliptic equations with variable exponents and L1 data [J].
Bendahmane, Mostafa ;
Wittbold, Petra .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (02) :567-583
[10]  
Bnilan P., 1995, Ann. Scuola Norm. Sup. Pisa Cl. Sci, V22, P241