Parameterized Algorithms for the Matrix Completion Problem

被引:0
作者
Ganian, Robert [1 ]
Kanj, Iyad [2 ]
Ordyniak, Sebastian [3 ]
Szeider, Stefan [1 ]
机构
[1] TU Wien, Algorithms & Complex Grp, Vienna, Austria
[2] Depaul Univ, Sch Comp, Chicago, IL 60604 USA
[3] Univ Sheffield, Algorithms Grp, Sheffield, S Yorkshire, England
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80 | 2018年 / 80卷
关键词
COMPLEXITY; GRAPHS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider two matrix completion problems, in which we are given a matrix with missing entries and the task is to complete the matrix in a way that (1) minimizes the rank, or (2) minimizes the number of distinct rows. We study the parameterized complexity of the two aforementioned problems with respect to several parameters of interest, including the minimum number of matrix rows, columns, and rows plus columns needed to cover all missing entries. We obtain new algorithmic results showing that, for the bounded domain case, both problems are fixed-parameter tractable with respect to all aforementioned parameters. We complement these results with a lower-bound result for the unbounded domain case that rules out fixed-parameter tractability w.r.t. some of the parameters under consideration.
引用
收藏
页数:10
相关论文
共 32 条
[1]  
[Anonymous], 2002, THESIS STANFORD U
[2]  
[Anonymous], 2015, Parameterized algorithms
[3]  
[Anonymous], 2014, C LEARNING THEORY
[4]   A complete parameterized complexity analysis of bounded planning [J].
Backstrom, Christer ;
Jonsson, Peter ;
Ordyniak, Sebastian ;
Szeider, Stefan .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2015, 81 (07) :1311-1332
[5]  
Berman P., 2003, ECCC, V049
[6]  
Bessie`re Christian, 2008, P 23 AAAI C ART INT, P235
[7]   Combinatorial optimization on graphs of bounded treewidth [J].
Bodlaender, Hans L. ;
Koster, Arie M. C. A. .
COMPUTER JOURNAL, 2008, 51 (03) :255-269
[8]   A ckn 5-APPROXIMATION ALGORITHM FOR TREEWIDTH [J].
Bodlaender, Hans L. ;
Drange, Pal Gronas ;
Dregi, Markus S. ;
Fomin, Fedor V. ;
Lokshtanov, Daniel ;
Pilipczuk, Micha L. .
SIAM JOURNAL ON COMPUTING, 2016, 45 (02) :317-378
[9]   A linear-time ie algorithm for finding three-decompositions of small treewidth [J].
Bodlaender, HL .
SIAM JOURNAL ON COMPUTING, 1996, 25 (06) :1305-1317
[10]   The Power of Convex Relaxation: Near-Optimal Matrix Completion [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (05) :2053-2080