Investigation of Pd nanoparticles supported on zeolites for hydrogen production from formic acid dehydrogenation

被引:102
|
作者
Navlani-Garcia, M. [1 ,2 ]
Martis, M. [3 ]
Lozano-Castello, D. [1 ,2 ]
Cazorla-Amoros, D. [1 ,2 ]
Mori, K. [3 ,4 ]
Yamashita, H. [3 ,4 ]
机构
[1] Univ Alicante, Dept Quim Inorgan, E-03080 Alicante, Spain
[2] Univ Alicante, Inst Univ Mat, E-03080 Alicante, Spain
[3] Osaka Univ, Grad Sch Engn, Div Mat & Mfg Sci, Suita, Osaka 5650871, Japan
[4] Kyoto Univ, ESICB, Kyoto 6158520, Japan
基金
日本学术振兴会;
关键词
ION-EXCHANGED ZEOLITES; PREFERENTIAL OXIDATION; EFFICIENT CATALYST; SURFACE-AREA; STORAGE; DECOMPOSITION; ADSORPTION; BETA; GAS; CO;
D O I
10.1039/c4cy00667d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Catalysts based on palladium nanoparticles supported on different zeolites (BETA, ZSM-5 and Y) were prepared and their catalytic performance in formic acid dehydrogenation was studied. The effects of the zeolite structure and porous texture on the catalytic activity were investigated by comparing the behaviour of these samples. The results revealed that the samples based on BETA zeolite are promising catalysts for this application.
引用
收藏
页码:364 / 371
页数:8
相关论文
共 50 条
  • [41] Hydrogen Production by Dehydrogenation of Formic Acid on Atomically Dispersed Gold on Ceria
    Yi, Nan
    Saltsburg, Howard
    Flytzani-Stephanopoulos, Maria
    CHEMSUSCHEM, 2013, 6 (05) : 816 - 819
  • [42] Enhancing formic acid dehydrogenation for hydrogen production with the metal/organic interface
    Wang, Hongli
    Chi, Yue
    Gao, Dawei
    Wang, Zhili
    Wang, Cong
    Wang, Liying
    Wang, Minggang
    Cheng, Daowen
    Zhang, Jingjing
    Wu, Chen
    Zhao, Zhankui
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 255
  • [43] Pd-MnOx nanoparticles dispersed on amine-grafted silica: Highly efficient nanocatalyst for hydrogen production from additive-free dehydrogenation of formic acid under mild conditions
    Bulut, Ahmet
    Yurderi, Mehmet
    Karatas, Yasar
    Zahmakiran, Mehmet
    Kivrak, Hilal
    Gulcan, Mehmet
    Kaya, Murat
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 164 : 324 - 333
  • [44] Modification of Pd Nanoparticles with Lower Work Function Elements for Enhanced Formic Acid Dehydrogenation and Trichloroethylene Dechlorination
    Li, Zhenjie
    Xu, Jiang
    Meng, Fanxu
    Yang, Kun
    Lin, Daohui
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (27) : 30735 - 30745
  • [45] Efficient hydrogen production from formic acid dehydrogenation over ultrasmall PdIr nanoparticles on amine-functionalized yolk-shell mesoporous silica
    Chai, Hao
    Hu, Jinsong
    Zhang, Rongmei
    Feng, Youcheng
    Li, Haidong
    Liu, Zhentao
    Zhou, Chunhui
    Wang, Xilong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 678 : 261 - 271
  • [46] Pd and Pd-Ag Nanoparticles within a Macroreticular Basic Resin: An Efficient Catalyst for Hydrogen Production from Formic Acid Decomposition
    Mori, Kohsuke
    Dojo, Masahiro
    Yamashita, Hiromi
    ACS CATALYSIS, 2013, 3 (06): : 1114 - 1119
  • [47] Ultrasmall Pd nanoparticles supported on a metal-organic framework DUT-67-PZDC for enhanced formic acid dehydrogenation
    Zhou, Chunhui
    Zhang, Rongmei
    Hu, Jinsong
    Yao, Changguang
    Liu, Zhentao
    Duan, Aijun
    Wang, Xilong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 673 : 997 - 1006
  • [48] Pd single atom supported on N-doped egg tray graphene as formic acid dehydrogenation catalysts
    Liu, Cheng
    Liu, Wei
    Miao, Mao-sheng
    Liu, Jing-yao
    2D MATERIALS, 2023, 10 (02)
  • [49] Superior activity of Pd nanoparticles confined in carbon nanotubes for hydrogen production from formic acid decomposition at ambient temperature
    Ding, Tian-Yi
    Zhao, Zhi-Gang
    Ran, Mao-Fei
    Yang, Yao-Yue
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 538 : 474 - 480
  • [50] Electronically modified Pd catalysts supported on N-doped carbon for the dehydrogenation of formic acid
    Jeon, Mina
    Han, Da Jung
    Lee, Kug-Seung
    Choi, Sun Hee
    Han, Jonghee
    Nam, Suk Woo
    Jang, Seong Chul
    Park, Hyun S.
    Yoon, Chang Won
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (34) : 15453 - 15461