Surface analysis of cobalt-enriched crushed products of spent lithium-ion batteries by X-ray photoelectron spectroscopy

被引:152
作者
Zhang, Tao [1 ]
He, Yaqun [1 ,2 ]
Wang, Fangfang [3 ]
Li, Hong [1 ]
Duan, Chenlong [1 ]
Wu, Caibin [4 ]
机构
[1] China Univ Min & Technol, Sch Chem Engn & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Adv Anal & Computat Ctr, Xuzhou 221116, Jiangsu, Peoples R China
[3] China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou 221116, Jiangsu, Peoples R China
[4] Jiangxi Univ Sci & Technol, Fac Resource & Environm Engn, Ganzhou 341000, Peoples R China
基金
中国国家自然科学基金;
关键词
Spent lithium-ion batteries; Surface analysis; Mechanical crushing; X-ray photoelectron spectroscopy; Flotation; HYDROMETALLURGICAL PROCESS; VALUABLE METALS; RECOVERY; PYROLYSIS; LICOO2; WASTE; LI; EXTRACTION; LIQUID; COPPER;
D O I
10.1016/j.seppur.2014.09.033
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this work, detailed surface analysis on the fine crushed products of spent lithium-ion batteries is investigated by X-ray photoelectron spectroscopy. The results showed that although LiCoO2 was a main composition of the fine crushed products, the surface atomic abundance of cobalt was only 1.69%, but the surface atomic abundance of organic compounds was more than 75%. During the crushing process, LiPF6 decomposed and harmful and toxic substances such as HF, POF3 were generated, it is necessary to take appropriate measures to avoid the secondary pollution in the crushing process of spent LiBs. Metallics such as Co, Cu, and Al were fluoridated and oxidized, and the organic compounds were oxidized and decomposed, too. The surface composition and microstructure of the fine particles were presented, which showed that the fine particles in the crushed products were lithium cobalt oxides and graphite cores coated inside by organic compounds. Flotation test pointed out that if the outer layer was removed, the flotation selectivity would be greatly improved: the enrichment ratio could be increased from 1.16 up to 3.24. Based on the surface analysis, potential ways for removal of the outer layer were proposed. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:21 / 27
页数:7
相关论文
共 33 条
[1]  
[Anonymous], 1995, HDB XRAY PHOTOELECTR
[2]   TOXICITY OF MATERIALS USED IN THE MANUFACTURE OF LITHIUM BATTERIES [J].
ARCHULETA, MM .
JOURNAL OF POWER SOURCES, 1995, 54 (01) :138-142
[3]   Synthesis, characterization and magnetic properties of microcrystalline lithium cobalt ferrite from spent lithium-ion batteries [J].
Bahat, M. ;
Farghaly, F. E. ;
Basir, S. M. Abdel ;
Fouad, O. A. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2007, 183 (01) :117-121
[4]   Advances in the recovering of spent lithium battery compounds [J].
Castillo, S ;
Ansart, F ;
Laberty-Robert, C ;
Portal, J .
JOURNAL OF POWER SOURCES, 2002, 112 (01) :247-254
[5]   A laboratory-scale lithium-ion battery recycling process [J].
Contestabile, M ;
Panero, S ;
Scrosati, B .
JOURNAL OF POWER SOURCES, 2001, 92 (1-2) :65-69
[6]   Recycling of fibre-reinforced polymeric waste by pyrolysis: thermo-gravimetric and bench-scale investigations [J].
Cunliffe, AM ;
Jones, N ;
Williams, PT .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2003, 70 (02) :315-338
[7]   Recovery of metals from waste printed circuit boards by a mechanical method using a water medium [J].
Duan, Chenlong ;
Wen, Xuefeng ;
Shi, Changsheng ;
Zhao, Yuemin ;
Wen, Baofeng ;
He, Yaqun .
JOURNAL OF HAZARDOUS MATERIALS, 2009, 166 (01) :478-482
[8]   Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries [J].
Ferreira, Daniel Alvarenga ;
Zimmer Prados, Luisa Martins ;
Majuste, Daniel ;
Mansur, Marcelo Borges .
JOURNAL OF POWER SOURCES, 2009, 187 (01) :238-246
[9]   Electrochemical recycling of cobalt from cathodes of spent lithium-ion batteries [J].
Freitas, M. B. J. G. ;
Garcia, E. M. .
JOURNAL OF POWER SOURCES, 2007, 171 (02) :953-959
[10]   A closed loop process for recycling spent lithium ion batteries [J].
Gratz, Eric ;
Sa, Qina ;
Apelian, Diran ;
Wang, Yan .
JOURNAL OF POWER SOURCES, 2014, 262 :255-262