Ensemble of neural networks for 3D position estimation in monolithic PET detectors

被引:39
作者
Iborra, A. [1 ]
Gonzalez, A. J. [2 ]
Gonzalez-Montoro, A. [2 ]
Bousse, A. [1 ]
Visvikis, D. [1 ]
机构
[1] Univ Bretagne Occidentale, Lab Med Informat Proc LaTIM, INSERM, UMR 1101, Brest, France
[2] Univ Politecn Valencia, CSIC, I3M, Ctr Mixto, Valencia, Spain
关键词
positron-emission tomography; monolithic PET detectors; ensemble of neural networks; Monte Carlo generated training; interaction position determination; depth of interaction determination; SCINTILLATOR CRYSTALS; LYSO; PERFORMANCE; SIMULATION; HEAD; SIPM;
D O I
10.1088/1361-6560/ab3b86
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We propose an ensemble of multilayer feedforward neural networks to estimate the 3D position of photoelectric interactions in monolithic detectors. The ensemble is trained with data generated from optical Monte Carlo simulations only. The originality of our approach is to exploit simulations to obtain reference data, in combination with a variability reduction that the network ensembles offer, thus, removing the need of extensive per-detector calibration measurements. This procedure delivers an ensemble valid for any detector of the same design. We show the capability of the ensemble to solve the 3D positioning problem through testing four different detector designs with Monte Carlo data, measurements from physical detectors and reconstructed images from the MindView scanner. Network ensembles allow the detector to achieve a 2-2.4 mm FWHM, depending on its design, and the associated reconstructed images present improved SNR, CNR and SSIM when compared to those based on the MindView built-in positioning algorithm.
引用
收藏
页数:20
相关论文
共 34 条
[21]   Monolithic scintillator PET detectors with intrinsic depth-of-interaction correction [J].
Maas, Marnix C. ;
Schaart, Dennis R. ;
van der Laan, D. J. ;
Bruyndonckx, Peter ;
Lemaitre, Cedric ;
Beekman, Freek J. ;
van Eijk, Carel W. E. .
PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (07) :1893-1908
[22]   Sub-millimetre DOI detector based on monolithic LYSO and digital SiPM for a dedicated small-animal PET system [J].
Marcinkowski, Radoslaw ;
Mollet, Pieter ;
Van Holen, Roel ;
Vandenberghe, Stefaan .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (05) :2196-2212
[23]   CASToR: a generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction [J].
Merlin, Thibaut ;
Stute, Simon ;
Benoit, Didier ;
Bert, Julien ;
Carlier, Thomas ;
Comtat, Claude ;
Filipovic, Marina ;
Lamare, Frederic ;
Visvikis, Dimitris .
PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (18)
[24]   A Novel DOI Positioning Algorithm for Monolithic Scintillator Crystals in PET Based on Gradient Tree Boosting [J].
Mueller, Florian ;
Schug, David ;
Hallen, Patrick ;
Grahe, Jan ;
Schulz, Volkmar .
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2019, 3 (04) :465-474
[25]   Gradient Tree Boosting-Based Positioning Method for Monolithic Scintillator Crystals in Positron Emission Tomography [J].
Mueller, Florian ;
Schug, David ;
Hallen, Patrick ;
Grahe, Jan ;
Schulz, Volkmar .
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2018, 2 (05) :411-421
[26]  
Nair V., 2010, P 27 INT C MACH LEAR, P807
[27]   SURFACE REFLECTION - PHYSICAL AND GEOMETRICAL PERSPECTIVES [J].
NAYAR, SK ;
IKEUCHI, K ;
KANADE, T .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (07) :611-634
[28]   Revisited position arithmetics for LaBr3:Ce continuous crystals [J].
Pani, R. ;
Vittorini, F. ;
Cinti, M. N. ;
Bennati, P. ;
Pellegrini, R. ;
Ridolfi, S. ;
Scafe, R. ;
Lo Meo, S. ;
Mattioli, M. ;
Navarria, F. L. ;
Moschini, G. ;
Fabbri, A. ;
D'Abramo, E. ;
Cencelli, V. Orsolini ;
Sacco, D. .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2009, 197 :383-386
[29]   A novel, SiPM-array-based, monolithic scintillator detector for PET [J].
Schaart, Dennis R. ;
van Dam, Herman T. ;
Seifert, Stefan ;
Vinke, Ruud ;
Dendooven, Peter ;
Lohner, Herbert ;
Beekman, Freek J. .
PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (11) :3501-3512
[30]  
Srivastava N, 2014, J MACH LEARN RES, V15, P1929