The synergistic effect of nano-hydroxyapatite and dexamethasone in the fibrous delivery system of gelatin and poly(L-lactide) on the osteogenesis of mesenchymal stem cells

被引:53
|
作者
Amjadian, Sara [1 ,2 ]
Seyedjafari, Ehsan [1 ]
Zeynali, Bahman [2 ]
Shabani, Iman [3 ]
机构
[1] Univ Tehran, Coll Sci, Dept Biotechnol, Tehran, Iran
[2] Univ Tehran, Sch Biol, Coll Sci, Tehran, Iran
[3] Amirkabir Univ Technol, Dept Biomed Engn, Tehran, Iran
关键词
Tissue engineering; Electrospinning; Gelatin; Nano-hydroxyapatite; Dexamethasone; Mesenchymal stem cells; MARROW STROMAL CELLS; FORMATION IN-VIVO; BONE-FORMATION; EXTRACELLULAR-MATRIX; TITANIUM IMPLANTS; ADIPOSE-TISSUE; GROWTH-FACTOR; SCAFFOLDS; VITRO; DIFFERENTIATION;
D O I
10.1016/j.ijpharm.2016.04.032
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Recently, electrospun nanofibrous scaffolds are vastly taken into consideration in the bone tissue engineering due to mimicking the natural structure of native tissue. In our study, surface features of nanofibers were modified through simultaneous electrospining of the synthetic and natural polymers using poly L-lactide (PLLA) and gelatin to fabricate the hybrid scaffold (PLLA/gelatin). Then, hydroxyapatite nanoparticles (nHA) were loaded in electrospun PLLA nanofibers (PLLA,nHA/gelatin) and also dexamethasone (DEX) was incorporated in these fibers (PLLA, nHA, DEX/gelatin) in the second experiment. Fabricated nanofibrous composite scaffolds were characterized via SEM, FTIR spectroscopy, contact angle, tensile strength measurements, DEX release profile and MTT assay. After seeding adipose derived mesenchymal stem cells, osteoinductivity and osteoconductivity of fabricated scaffolds were analyzed using common osteogenic markers such as alkaline phosphatase activity, calcium depositions and gene expression. These results confirmed that all properties of nanofibers were improved by modifications. Moreover, osteogenic differentiation of stem cells increased in PLLA, nHA/gelatin group in comparison with PLLA/gelatin. The sustained release of DEX was obtained from PLLA, nHA, DEX/gelatin which subsequently led to more osteogenic differentiation. Taken together, PLLA, nHA, DEX/gelatin showed significant potential to support the stem cell proliferation and ostogenic differentiation, and can be a good candidates for tissue engineering and regenerative medicine applications. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 33 条
  • [1] Poly(L-lactide)/nano-hydroxyapatite piezoelectric scaffolds for tissue engineering
    Zaszczynska, Angelika
    Gradys, Arkadiusz
    Kolbuk, Dorota
    Zabielski, Konrad
    Szewczyk, Piotr K.
    Stachewicz, Urszula
    Sajkiewicz, Pawel
    MICRON, 2025, 188
  • [2] Fabrication and characterization of nano-hydroxyapatite/poly (D, L-lactide) composite porous scaffolds for human cartilage
    Cheng, L
    Zhang, SM
    Chen, PP
    Huang, SL
    Cao, RR
    Zhou, W
    Liu, J
    Luo, QM
    Gong, H
    BIOCERAMICS 18, PTS 1 AND 2, 2006, 309-311 : 943 - 946
  • [3] Enhanced bone regeneration by porous poly(L-lactide) scaffolds with surface-immobilized nano-hydroxyapatite
    Koo, Ahn Na
    Kwon, Il Keun
    Lee, Sang Cheon
    Lee, Soon-Ki
    Kim, Hyeong-Seob
    Woo, Yi-Hyung
    Jeon, Seong-Hyun
    Chae, Ji-Hwa
    Kang, Ke-Won
    MACROMOLECULAR RESEARCH, 2010, 18 (10) : 1030 - 1036
  • [4] Modulation of Osteogenic Differentiation of Human Mesenchymal Stem Cells by Poly[(L-lactide)-co-(ε-caprolactone)]/Gelatin Nanofibers
    Rim, Nae Gyune
    Lee, Ji Hye
    Jeong, Sung In
    Lee, Bu Kyu
    Kim, Chun Ho
    Shin, Heungsoo
    MACROMOLECULAR BIOSCIENCE, 2009, 9 (08) : 795 - 804
  • [5] Estrogen enhances the bone regeneration potential of periodontal ligament stem cells derived from osteoporotic rats and seeded on nano-hydroxyapatite/collagen/poly(L-lactide)
    E, Ling-Ling
    Xu, Wen-Huan
    Feng, Lin
    Liu, Yi
    Cai, Dong-Qing
    Wen, Ning
    Zheng, Wen-Jie
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2016, 37 (06) : 1475 - 1486
  • [6] Enhanced bone regeneration by porous poly(L-lactide) scaffolds with surface-immobilized nano-hydroxyapatite
    Ahn Na Koo
    Il Keun Kwon
    Sang Cheon Lee
    Soon-Ki Lee
    Hyeong-Seob Kim
    Yi-Hyung Woo
    Seong-Hyun Jeon
    Ji-Hwa Chae
    Ke-Won Kang
    Macromolecular Research, 2010, 18 : 1030 - 1036
  • [7] In vivo degradation behavior of porous composite scaffolds of poly(lactide-co-glycolide) and nano-hydroxyapatite surface grafted with poly(L-lactide)
    Tang, Yu-feng
    Liu, Jian-guo
    Wang, Zong-liang
    Wang, Yu
    Cui, Li-guo
    Zhang, Pei-biao
    Chen, Xue-si
    CHINESE JOURNAL OF POLYMER SCIENCE, 2014, 32 (06) : 805 - 816
  • [8] Study on a novel double-layered composite membrane of Mg-substituted nano-hydroxyapatite/poly(L-lactide-co-ε-caprolactone): Effect of different L-lactide/ε-caprolactone ratios
    Xu Lijuan
    Jiang Liuyun
    Xiong Chengdong
    Jiang Lixin
    Li Ye
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 615 : 361 - 366
  • [9] Effect of Endothelial Differentiated Adipose-Derived Stem Cells on Vascularity and Osteogenesis in Poly(D,L-Lactide) Scaffolds In Vivo
    Sahar, David E.
    Walker, John A.
    Wang, Howard T.
    Stephenson, Stacy M.
    Shah, Amita R.
    Krishnegowda, Naveen K.
    Wenke, Joseph C.
    JOURNAL OF CRANIOFACIAL SURGERY, 2012, 23 (03) : 913 - 918
  • [10] Osteogenesis of bone marrow mesenchymal stem cells on nano-hydroxyapatite/bacterial cellulose coposite scaffolds in rats
    Song, Tong-Qu
    Ge, Bao-Jian
    Chen, Hung-Liang
    Yang, Xiao-Wei
    Yuan, Feng
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2016, 9 (10): : 9775 - 9785