The genetics of adaptive responses to drought stress: abscisic acid-dependent and abscisic acid-independent signalling components

被引:57
|
作者
Riera, M [1 ]
Valon, C [1 ]
Fenzi, F [1 ]
Giraudat, J [1 ]
Leung, J [1 ]
机构
[1] CNRS, Inst Sci Vegetales, UPR2355, F-91198 Gif Sur Yvette, France
关键词
D O I
10.1111/j.1399-3054.2005.00469.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought stress is the major limitation to crop productivity. However, crops are genetically complex with many loci contributing quantitatively to a given physiological trait. Nonetheless, significant in-roads into the molecular mechanisms of drought-adaptive responses have been made from the use of Arabidopsis thaliana. In this special review, we will discuss results gleaned from reverse and forward genetic studies that revealed the involvement of both ABA-dependent and ABA-independent components. In particular, mutant analyses have highlighted the surprising prevalence of RNA metabolism in many key steps. We will also discuss our recent use of infrared thermography to visualize stomatal closure in response to dehydration as a means to identify novel regulatory genes. This has allowed us to recover mutations belonging to at least eight complementation groups. Analysis of six of these loci revealed that all of their corresponding mutations affect either abscisic acid (ABA) biosynthesis or perception. Hence, in contrast to molecular studies on gene networks which pointed to the clear existence of multiple ABA- independent pathways in the control of dehydration tolerance, our results reinforce ABA-based signalling pathways as the predominant factor in primary or rapid responses. Finally, we will provide some details learned from the molecular analysis of OPEN STOMATA1 (OST1), a gene that encodes an ABA-activated kinase issued from this targeted genetic approach.
引用
收藏
页码:111 / 119
页数:9
相关论文
共 50 条
  • [1] Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress
    Aryadeep Roychoudhury
    Saikat Paul
    Supratim Basu
    Plant Cell Reports, 2013, 32 : 985 - 1006
  • [2] Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress
    Roychoudhury, Aryadeep
    Paul, Saikat
    Basu, Supratim
    PLANT CELL REPORTS, 2013, 32 (07) : 985 - 1006
  • [3] Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: Interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways
    Ishitani, M
    Xiong, LM
    Stevenson, B
    Zhu, JK
    PLANT CELL, 1997, 9 (11): : 1935 - 1949
  • [4] Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana
    Savoure, A
    Hua, XJ
    Bertauche, N
    VanMontagu, M
    Verbruggen, N
    MOLECULAR AND GENERAL GENETICS, 1997, 254 (01): : 104 - 109
  • [5] Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana
    A. Savouré
    X.-J. Hua
    N. Bertauche
    M. Van Montagu
    N. Verbruggen
    Molecular and General Genetics MGG, 1997, 254 : 104 - 109
  • [6] BarleyABI5(Abscisic Acid INSENSITIVE 5) Is Involved in Abscisic Acid-Dependent Drought Response
    Collin, Anna
    Daszkowska-Golec, Agata
    Kurowska, Marzena
    Szarejko, Iwona
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [7] miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner
    Jian Bo Song
    Shuai Gao
    Di Sun
    Hua Li
    Xia Xia Shu
    Zhi Min Yang
    BMC Plant Biology, 13
  • [8] miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner
    Song, Jian Bo
    Gao, Shuai
    Sun, Di
    Li, Hua
    Shu, Xia Xia
    Yang, Zhi Min
    BMC PLANT BIOLOGY, 2013, 13
  • [9] Abscisic acid-dependent nitric oxide pathway and abscisic acid-independent nitric oxide routes differently modulate NaCl stress induction of the gene expression of methionine sulfoxide reductase A and B in rice roots
    Hsu, Yi Ting
    Lee, Tse-Min
    JOURNAL OF PLANT PHYSIOLOGY, 2018, 231 : 374 - 382
  • [10] BILIARY CALCIUM SECRETION IN MAN HAS BILE ACID-DEPENDENT AND ACID-INDEPENDENT COMPONENTS
    GLEESON, D
    SCRIVENS, N
    MURPHY, GM
    DOWLING, RH
    GUT, 1984, 25 (10) : 1173 - 1173