Free-electron lasing at 27 nanometres based on a laser wakefield accelerator

被引:263
作者
Wang, Wentao [1 ,2 ]
Feng, Ke [1 ,2 ]
Ke, Lintong [1 ,2 ,3 ]
Yu, Changhai [1 ,2 ]
Xu, Yi [1 ,2 ]
Qi, Rong [1 ,2 ]
Chen, Yu [1 ,2 ]
Qin, Zhiyong [1 ,2 ]
Zhang, Zhijun [1 ,2 ]
Fang, Ming [1 ,2 ]
Liu, Jiaqi [1 ,2 ]
Jiang, Kangnan [1 ,2 ,4 ]
Wang, Hao [1 ,2 ]
Wang, Cheng [1 ,2 ]
Yang, Xiaojun [1 ,2 ]
Wu, Fenxiang [1 ,2 ]
Leng, Yuxin [1 ,2 ]
Liu, Jiansheng [1 ,2 ]
Li, Ruxin [1 ,2 ,4 ]
Xu, Zhizhan [1 ,2 ]
机构
[1] Chinese Acad Sci, State Key Lab High Field Laser Phys, Shanghai Inst Opt & Fine Mech SIOM, Shanghai, Peoples R China
[2] Chinese Acad Sci, CAS Ctr Excellence Ultraintense Laser Sci, Shanghai Inst Opt & Fine Mech SIOM, Shanghai, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing, Peoples R China
[4] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
HIGH-GAIN; OPERATION; EMISSION; DRIVEN; BEAMS;
D O I
10.1038/s41586-021-03678-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
X-ray free-electron lasers can generate intense and coherent radiation at wavelengths down to the sub-angstrom region(1-5), and have become indispensable tools for applications in structural biology and chemistry, among other disciplines(6). Several X-ray free-electron laser facilities are in operation(2-5); however, their requirement for large, high-cost, state-of-the-art radio-frequency accelerators has led to great interest in the development of compact and economical accelerators. Laser wakefield accelerators can sustain accelerating gradients more than three orders of magnitude higher than those of radio-frequency accelerators(7-10), and are regarded as an attractive option for driving compact X-ray free-electron lasers(11). However, the realization of such devices remains a challenge owing to the relatively poor quality of electron beams that are based on a laser wakefield accelerator. Here we present an experimental demonstration of undulator radiation amplification in the exponential-gain regime by using electron beams based on a laser wakefield accelerator. The amplified undulator radiation, which is typically centred at 27 nanometres and has a maximum photon number of around 1010 per shot, yields a maximum radiation energy of about 150 nanojoules. In the third of three undulators in the device, the maximum gain of the radiation power is approximately 100-fold, confirming a successful operation in the exponential-gain regime. Our results constitute a proof-of-principle demonstration of free-electron lasing using a laser wakefield accelerator, and pave the way towards the development of compact X-ray free-electron lasers based on this technology with broad applications.
引用
收藏
页码:516 / +
页数:16
相关论文
共 47 条
[1]   Operation of a free-electron laser from the extreme ultraviolet to the water window [J].
Ackermann, W. ;
Asova, G. ;
Ayvazyan, V. ;
Azima, A. ;
Baboi, N. ;
Baehr, J. ;
Balandin, V. ;
Beutner, B. ;
Brandt, A. ;
Bolzmann, A. ;
Brinkmann, R. ;
Brovko, O. I. ;
Castellano, M. ;
Castro, P. ;
Catani, L. ;
Chiadroni, E. ;
Choroba, S. ;
Cianchi, A. ;
Costello, J. T. ;
Cubaynes, D. ;
Dardis, J. ;
Decking, W. ;
Delsim-Hashemi, H. ;
Delserieys, A. ;
Di Pirro, G. ;
Dohlus, M. ;
Duesterer, S. ;
Eckhardt, A. ;
Edwards, H. T. ;
Faatz, B. ;
Feldhaus, J. ;
Floettmann, K. ;
Frisch, J. ;
Froehlich, L. ;
Garvey, T. ;
Gensch, U. ;
Gerth, Ch. ;
Goerler, M. ;
Golubeva, N. ;
Grabosch, H.-J. ;
Grecki, M. ;
Grimm, O. ;
Hacker, K. ;
Hahn, U. ;
Han, J. H. ;
Honkavaara, K. ;
Hott, T. ;
Huening, M. ;
Ivanisenko, Y. ;
Jaeschke, E. .
NATURE PHOTONICS, 2007, 1 (06) :336-342
[2]  
Allaria E, 2012, NAT PHOTONICS, V6, P699, DOI [10.1038/NPHOTON.2012.233, 10.1038/nphoton.2012.233]
[3]   An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator [J].
Anania, M. P. ;
Brunetti, E. ;
Wiggins, S. M. ;
Grant, D. W. ;
Welsh, G. H. ;
Issac, R. C. ;
Cipiccia, S. ;
Shanks, R. P. ;
Manahan, G. G. ;
Aniculaesei, C. ;
van der Geer, S. B. ;
de Loos, M. J. ;
Poole, M. W. ;
Shepherd, B. J. A. ;
Clarke, J. A. ;
Gillespie, W. A. ;
MacLeod, A. M. ;
Jaroszynski, D. A. .
APPLIED PHYSICS LETTERS, 2014, 104 (26)
[4]   Control of laser plasma accelerated electrons for light sources [J].
Andre, T. ;
Andriyash, I. A. ;
Loulergue, A. ;
Labat, M. ;
Roussel, E. ;
Ghaith, A. ;
Khojoyan, M. ;
Thaury, C. ;
Valleau, M. ;
Briquez, F. ;
Marteau, F. ;
Tavakoli, K. ;
N'Gotta, P. ;
Dietrich, Y. ;
Lambert, G. ;
Malka, V. ;
Benabderrahmane, C. ;
Veteran, J. ;
Chapuis, L. ;
El Ajjouri, T. ;
Sebdaoui, M. ;
Hubert, N. ;
Marcouille, O. ;
Berteaud, P. ;
Leclercq, N. ;
El Ajjouri, M. ;
Rommeluere, P. ;
Bouvet, F. ;
Duval, J. -P. ;
Kitegi, C. ;
Blache, F. ;
Mahieu, B. ;
Corde, S. ;
Gautier, J. ;
Ta Phuoc, K. ;
Goddet, J. P. ;
Lestrade, A. ;
Herbeaux, C. ;
Evain, C. ;
Szwaj, C. ;
Bielawski, S. ;
Tafzi, A. ;
Rousseau, P. ;
Smartsev, S. ;
Polack, F. ;
Dennetiere, D. ;
Bourassin-Bouchet, C. ;
De Oliveira, C. ;
Couprie, M. -E. .
NATURE COMMUNICATIONS, 2018, 9
[5]  
Borland M., 2000, LS287 ARG NAT LAB
[6]   Linac Coherent Light Source: The first five years [J].
Bostedt, Christoph ;
Boutet, Sebastien ;
Fritz, David M. ;
Huang, Zhirong ;
Lee, Hae Ja ;
Lemke, Henrik T. ;
Robert, Aymeric ;
Schlotter, William F. ;
Turner, Joshua J. ;
Williams, Garth J. .
REVIEWS OF MODERN PHYSICS, 2016, 88 (01)
[7]   Shock-Front Injector for High-Quality Laser-Plasma Acceleration [J].
Buck, A. ;
Wenz, J. ;
Xu, J. ;
Khrennikov, K. ;
Schmid, K. ;
Heigoldt, M. ;
Mikhailova, J. M. ;
Geissler, M. ;
Shen, B. ;
Krausz, F. ;
Karsch, S. ;
Veisz, L. .
PHYSICAL REVIEW LETTERS, 2013, 110 (18)
[8]   Observation of longitudinal and transverse self-injections in laser-plasma accelerators [J].
Corde, S. ;
Thaury, C. ;
Lifschitz, A. ;
Lambert, G. ;
Phuoc, K. Ta ;
Davoine, X. ;
Lehe, R. ;
Douillet, D. ;
Rousse, A. ;
Malka, V. .
NATURE COMMUNICATIONS, 2013, 4
[9]  
Emma P, 2010, NAT PHOTONICS, V4, P641, DOI [10.1038/NPHOTON.2010.176, 10.1038/nphoton.2010.176]
[10]   Long-distance characterization of high-quality laser-wakefield-accelerated electron beams [J].
Fang, Ming ;
Wang, Wentao ;
Zhang, Zhijun ;
Liu, Jiansheng ;
Yu, Changhai ;
Qi, Rong ;
Qin, Zhiyong ;
Liu, Jiaqi ;
Feng, Ke ;
Wu, Ying ;
Wang, Cheng ;
Liu, Tao ;
Wang, Dong ;
Xu, Yi ;
Wu, Fenxiang ;
Leng, Yuxin ;
Li, Ruxin ;
Xu, Zhizhan .
CHINESE OPTICS LETTERS, 2018, 16 (04)