Hill's lunar equations

被引:0
作者
不详
机构
来源
PERIODIC SOLUTIONS OF THE N-BODY PROBLEM | 1999年 / 1719卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:119 / 127
页数:9
相关论文
共 50 条
[41]   Optimal control approach to stability criteria on Hill's equations [J].
Zu Jian ;
Li Yong .
APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2018, 33 (03) :253-273
[42]   Optimal control approach to stability criteria on Hill’s equations [J].
Jian Zu ;
Yong Li .
Applied Mathematics-A Journal of Chinese Universities, 2018, 33 :253-273
[43]   Kohn's theorem and Newton-Hooke symmetry for Hill's equations [J].
Zhang, P. M. ;
Gibbons, G. W. ;
Horvathy, P. A. .
PHYSICAL REVIEW D, 2012, 85 (04)
[44]   On the periodic orbits and the integrability of the regularized Hill lunar problem [J].
Llibre, Jaume ;
Roberto, Luci Any .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (08)
[45]   Constructing invariant tori for the spatial Hill lunar problem [J].
Dongfeng Yan .
Chinese Annals of Mathematics, Series B, 2016, 37 :125-136
[46]   Constructing Invariant Tori for the Spatial Hill Lunar Problem [J].
Yan, Dongfeng .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2016, 37 (01) :125-136
[47]   Global Bifurcations of Periodic solutions of the Hill Lunar Problem* [J].
A.J. Maciejewski ;
S.M. Rybicki .
Celestial Mechanics and Dynamical Astronomy, 2001, 81 :279-297
[48]   Global bifurcations of periodic solutions of the Hill Lunar Problem [J].
Maciejewski, AJ ;
Rybicki, SM .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2001, 81 (04) :279-297
[49]   Constructing Invariant Tori for the Spatial Hill Lunar Problem [J].
Dongfeng YAN .
ChineseAnnalsofMathematics(SeriesB), 2016, 37 (01) :125-136
[50]   Hill's equations, mean orbital elements, andformation flying of satellites [J].
Vadali, S.R. ;
Alfriend, K.T. ;
Vaddi, S. .
Advances in the Astronautical Sciences, 2000, 106 :187-203