Change Detection Analysis using Bitemporal PRISMA Hyperspectral Data: Case Study of Magelang and Boyolali Districts, Central Java']Java Province, Indonesia

被引:5
作者
Arjasakusuma, Sanjiwana [1 ]
Kusuma, Sandiaga Swahyu [1 ]
Melati, Pegi [1 ]
Hafiudzan, Akmal [1 ]
机构
[1] Univ Gadjah Mada, Fac Geog, Dept Geog Informat Sci, Yogyakarta, Indonesia
关键词
Change vector analysis; Similarity metrics; Principal components; Independent components; IMAGES; TENSOR;
D O I
10.1007/s12524-022-01566-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Satellite missions which collect hyperspectral data provide detailed spectral information at a lower cost than airborne missions. The newly launched PRISMA hyperspectral mission provides greater swath coverage than the previous Hyperion hyperspectral mission. This study aims to assess the potential use of bitemporal PRISMA datasets for change detection (CD), by means of the clustering of Gaussian mixture models (GMM) with inputs to the magnitude component derived from change vector analysis (CVA), distance metrics and principal component analysis (PCA) from stacked data, and image-differenced layers. In addition, a change detection method using a combination of the modified z-score from image-differenced layers and a spectral angle mapper (SAM), SAMZID-TAN, was also assessed. Overall accuracies for CD in our results varied between 50.90 and 78.83%, with the producer's and user's accuracies for the change class ranging from 69.74 to 84.21% and 38.13-66.29%, respectively. SAMZID-TAN was the most accurate method for CD. Moderate CD accuracy was achieved using PRISMA due to the effects of misregistration and image striping, which contributed to misclassification. In future research, proper pre-processing should be performed in order to avoid the detection of false positives when using hyperspectral data.
引用
收藏
页码:1803 / 1811
页数:9
相关论文
共 39 条
[1]   A new approach for thresholding spectral change detection using multispectral and hyperspectral image data, a case study over Sokolov, Czech republic [J].
Adar, Simon ;
Shkolnisky, Yoel ;
Ben Dor, Eyal .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (04) :1563-1584
[2]  
Afwani MZ., 2019, 6 GEOINFORMATION SCI
[3]   Patch Tensor-Based Sparse and Low-Rank Graph for HyperspectralImages Dimensionality Reduction [J].
An, Jinliang ;
Zhang, Xiangrong ;
Zhou, Huiyu ;
Feng, Jie ;
Jiao, Licheng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (07) :2513-2527
[4]  
Bruzzone L, 2016, REMOTE SENS DIGIT IM, V20, P63, DOI 10.1007/978-3-319-47037-5_4
[5]   Linear and kernel methods for multivariate change detection [J].
Canty, Morton J. ;
Nielsen, Allan A. .
COMPUTERS & GEOSCIENCES, 2012, 38 (01) :107-114
[6]   A New Approach to Change Vector Analysis Using Distance and Similarity Measures [J].
Carvalho Junior, Osmar A. ;
Guimaraes, Renato F. ;
Gillespie, Alan R. ;
Silva, Nilton C. ;
Gomes, Roberto A. T. .
REMOTE SENSING, 2011, 3 (11) :2473-2493
[7]   Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering [J].
Celik, Turgay .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (04) :772-776
[8]  
Cha S., 2007, INT J MATH MODELS ME, V1, P1
[9]   The PRISMA imaging spectroscopy mission: overview and first performance analysis [J].
Cogliati, S. ;
Sarti, F. ;
Chiarantini, L. ;
Cosi, M. ;
Lorusso, R. ;
Lopinto, E. ;
Miglietta, F. ;
Genesio, L. ;
Guanter, L. ;
Damm, A. ;
Perez-Lopez, S. ;
Scheffler, D. ;
Tagliabue, G. ;
Panigada, C. ;
Rascher, U. ;
Dowling, T. P. F. ;
Giardino, C. ;
Colombo, R. .
REMOTE SENSING OF ENVIRONMENT, 2021, 262
[10]   Monitoring active volcanism with the autonomous sciencecraft experiment on EO-1 [J].
Davies, AG ;
Chien, S ;
Baker, V ;
Doggett, T ;
Dohm, J ;
Greeley, R ;
Ip, F ;
Castano, R ;
Cichy, B ;
Rabideau, G ;
Tran, D ;
Sherwood, R .
REMOTE SENSING OF ENVIRONMENT, 2006, 101 (04) :427-446