Image recognition of interference fringes in polishing by convolutional neural network with data augmentation by deep convolutional generative adversarial network

被引:3
|
作者
Chen, Yi-Huei [1 ]
Lin, Wei-Ting [1 ]
Liu, Chun-Wei [1 ]
机构
[1] Natl Tsing Hua Univ, Power Mech Engn, Hsinchu, Taiwan
关键词
interference fringes; Zernike polynomials; deep convolutional generative adversarial network; convolutional neural networks; CNN;
D O I
10.1117/1.OE.61.4.045102
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
With the growing need for high specification requirements for the latest manufacturing processes and optical designs of glass lenses, the technical requirements for lens polishing have increased. The manufacturing parameters must be adjusted in a timely manner to meet the required specifications. We use a Fizeau interferometer to classify and analyze interference fringes measured in the actual polishing process of glass lenses. Given the low incidence of interference fringes in practice, the training dataset contained a disproportionate ratio of data for each data type. To reduce the manufacturing cost and data collection time, this study focused on three common types of interference fringes in the manufacturing processes and integrated a deep convolutional generative adversarial network with convolutional neural networks (CNNs) for fringe type classification. The deep convolutional generative adversarial network was used to establish a data augmentation generator, and Jensen-Shannon divergence was employed to identify the epoch number that yielded distributions of interference fringe numbers closest to the real distributions; this approach could achieve the diversity of interference fringes in the generated images. Finally, the generated data were used to train the CNN models, and the accuracy of image recognition reached above 86%. (C) 2022 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A Convolutional Neural Network for Leaves Recognition Using Data Augmentation
    Zhang, Chaoyun
    Zhou, Pan
    Li, Chenghua
    Liu, Lijun
    CIT/IUCC/DASC/PICOM 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY - UBIQUITOUS COMPUTING AND COMMUNICATIONS - DEPENDABLE, AUTONOMIC AND SECURE COMPUTING - PERVASIVE INTELLIGENCE AND COMPUTING, 2015, : 2147 - 2154
  • [22] Image Synthesis with a Convolutional Capsule Generative Adversarial Network
    Bass, Cher
    Dai, Tianhong
    Billot, Benjamin
    Arulkumaran, Kai
    Creswell, Antonia
    Clopath, Claudia
    De Paola, Vincenzo
    Bharath, Anil Anthony
    INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 102, 2019, 102 : 39 - 62
  • [23] DATA AUGMENTATION FOR DEEP CONVOLUTIONAL NEURAL NETWORK ACOUSTIC MODELING
    Cui, Xiaodong
    Goel, Vaibhava
    Kingsbury, Brian
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 4545 - 4549
  • [24] Data Augmentation Using Contour Image for Convolutional Neural Network
    Hwang, Seung-Yeon
    Kim, Jeong-Joon
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 4669 - 4680
  • [25] SINGLE SENSOR IMAGE FUSION USING A DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORK
    Palsson, Frosti
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,
  • [26] Deep Convolutional Generative Adversarial Network with Autoencoder for Semisupervised SAR Image Classification
    Zhang, Zheng
    Yang, Jingsong
    Du, Yang
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [27] Deep Convolutional Generative Adversarial Network With Autoencoder for Semisupervised SAR Image Classification
    Zhang, Zheng
    Yang, Jingsong
    Du, Yang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [28] Detection of Plant Leaf Disease by Generative Adversarial and Deep Convolutional Neural Network
    Deshpande R.
    Patidar H.
    Journal of The Institution of Engineers (India): Series B, 2023, 104 (5) : 1043 - 1052
  • [29] Improved Classification of White Blood Cells with the Generative Adversarial Network and Deep Convolutional Neural Network
    Almezhghwi, Khaled
    Serte, Sertan
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2020, 2020
  • [30] Optimal deep generative adversarial network and convolutional neural network for rice leaf disease prediction
    Ancy Stephen
    A. Punitha
    A. Chandrasekar
    The Visual Computer, 2024, 40 (2) : 919 - 936