Local and linear chemical reactivity response functions at finite temperature in density functional theory

被引:56
|
作者
Franco-Perez, Marco [1 ,2 ]
Ayers, Paul W. [1 ]
Gazquez, Jose L. [2 ]
Vela, Alberto [3 ]
机构
[1] McMaster Univ, Dept Chem & Biol Chem, Hamilton, ON L8S 4M1, Canada
[2] Univ Autonoma Metropolitana Iztapalapa, Dept Quim, Mexico City 09340, DF, Mexico
[3] Ctr Invest & Estudios Avanzados Cinvestav, Dept Quim, Mexico City 07360, DF, Mexico
基金
加拿大自然科学与工程研究理事会;
关键词
FRONTIER-ELECTRON THEORY; ABSOLUTE HARDNESS; FUKUI FUNCTIONS; CONCEPTUAL DFT; SOFTNESS; ELECTRONEGATIVITY; INDEXES; NUMBER; ENERGY; PERSPECTIVES;
D O I
10.1063/1.4938422
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Density functional theory, chemical reactivity, and the Fukui functions
    Pucci, R.
    Angilella, G. G. N.
    FOUNDATIONS OF CHEMISTRY, 2022, 24 (01) : 59 - 71
  • [2] Density functional theory, chemical reactivity, and the Fukui functions
    R. Pucci
    G. G. N. Angilella
    Foundations of Chemistry, 2022, 24 : 59 - 71
  • [3] Chemical reactivity indexes in density functional theory
    Chermette, H
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1999, 20 (01) : 129 - 154
  • [4] Chemical reactivity from a conceptual density functional theory perspective
    Pal, Ranita
    Chattaraj, Pratim Kumar
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2021, 98 (01)
  • [5] Structure, aromaticity and reactivity of corannulene and its analogues: a conceptual density functional theory and density functional reactivity theory study
    Deng, Youer
    Yu, Donghai
    Cao, Xiaofang
    Liu, Lianghong
    Rong, Chunying
    Lu, Tian
    Liu, Shubin
    MOLECULAR PHYSICS, 2018, 116 (7-8) : 956 - 968
  • [6] Stability conditions for density functional reactivity theory: An interpretation of the total local hardness
    Ayers, Paul W.
    Liu, Shubin
    Li, Tonglei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (10) : 4427 - 4433
  • [7] Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions
    Geerlings, Paul
    De Proft, Frank
    Fias, Stijn
    ACTA PHYSICO-CHIMICA SINICA, 2018, 34 (06) : 699 - 707
  • [8] Perspectives on the Density Functional Theory of Chemical Reactivity
    Gazquez, Jose L.
    JOURNAL OF THE MEXICAN CHEMICAL SOCIETY, 2008, 52 (01) : 3 - 10
  • [9] The spin polarized linear response from density functional theory: Theory and application to atoms
    Fias, Stijn
    Boisdenghien, Zino
    De Proft, Frank
    Geerlings, Paul
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (18)
  • [10] Local chemical potential, local hardness, and dual descriptors in temperature dependent chemical reactivity theory
    Franco-Perez, Marco
    Ayers, Paul W.
    Gazquez, Jose L.
    Vela, Alberto
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (21) : 13687 - 13695