Local and linear chemical reactivity response functions at finite temperature in density functional theory

被引:57
作者
Franco-Perez, Marco [1 ,2 ]
Ayers, Paul W. [1 ]
Gazquez, Jose L. [2 ]
Vela, Alberto [3 ]
机构
[1] McMaster Univ, Dept Chem & Biol Chem, Hamilton, ON L8S 4M1, Canada
[2] Univ Autonoma Metropolitana Iztapalapa, Dept Quim, Mexico City 09340, DF, Mexico
[3] Ctr Invest & Estudios Avanzados Cinvestav, Dept Quim, Mexico City 07360, DF, Mexico
基金
加拿大自然科学与工程研究理事会;
关键词
FRONTIER-ELECTRON THEORY; ABSOLUTE HARDNESS; FUKUI FUNCTIONS; CONCEPTUAL DFT; SOFTNESS; ELECTRONEGATIVITY; INDEXES; NUMBER; ENERGY; PERSPECTIVES;
D O I
10.1063/1.4938422
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 62 条
[1]   Conformational Control in [22]- and [24]Pentaphyrins(1.1.1.1.1) by Meso Substituents and their N-Fusion Reaction [J].
Alonso, Mercedes ;
Geerlings, Paul ;
De Proft, Frank .
JOURNAL OF ORGANIC CHEMISTRY, 2013, 78 (09) :4419-4431
[2]  
[Anonymous], 1989, Density Functional Theoryof Atoms and Molecules
[3]  
Ayers P. W., 2003, COMPUTATIONAL MED CH
[4]  
Ayers P. W., 2009, CHEM REACTIVITY THEO
[5]   The dependence on and continuity of the energy and other molecular properties with respect to the number of electrons [J].
Ayers, Paul W. .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 43 (01) :285-303
[6]   Understanding the Woodward-Hoffmann rules by using changes in electron density [J].
Ayers, Paul W. ;
Morell, Christophe ;
De Proft, Frank ;
Geerlings, Paul .
CHEMISTRY-A EUROPEAN JOURNAL, 2007, 13 (29) :8240-8247
[7]   The physical basis of the hard/soft acid/base principle [J].
Ayers, Paul W. .
FARADAY DISCUSSIONS, 2007, 135 :161-190
[8]   Beyond electronegativity and local hardness: Higher-order equalization criteria for determination of a ground-state electron density [J].
Ayers, Paul W. ;
Parr, Robert G. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (05)
[9]   Perturbative perspectives on the chemical reaction prediction problem [J].
Ayers, PW ;
Anderson, JSM ;
Bartolotti, LJ .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2005, 101 (05) :520-534
[10]   Perspective on "Density functional approach to the frontier-electron theory of chemical reactivity" - Parr RG, Yang W (1984) J Am Chem Soc 106: 4049-4050 [J].
Ayers, PW ;
Levy, M .
THEORETICAL CHEMISTRY ACCOUNTS, 2000, 103 (3-4) :353-360