Towards resilient adaptive origami-inspired diagrid building envelope

被引:8
作者
Bellamy, Amanda [1 ]
Boustani, Jonathan [2 ]
Brehm, Christoph [2 ]
Soto, Mariantonieta Gutierrez [1 ]
机构
[1] Univ Kentucky, Dept Civil Engn, 161 Oliver H Raymond Bldg, Lexington, KY 40506 USA
[2] Univ Kentucky, Dept Mech Engn, 151 Ralph G Anderson Bldg, Lexington, KY 40506 USA
来源
ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XIII | 2019年 / 10967卷
关键词
smart structures; adaptive; building envelope; morphing; origami; wind; VIBRATION CONTROL; DESIGN; OPTIMIZATION;
D O I
10.1117/12.2514132
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Natural disasters, such as hurricanes, cyclones, and other high-speed windstorm events, pose a threat to the built environment. The damage of the nonstructural components due to high winds, flooding, hurricane surge and rainwater intrusion surrounding a building structure such as the facade accounts for the majority of the financial loss. The increased interest in the sustainable design of buildings gives forward to the development of creative low energy alternatives for the adaptive facade. This paper studies five facade configurations subjected to wind loading. An adaptive diagrid facade (ADF) is modeled using a panel system of four equilateral triangles: one panel is actuated at the nodes using linear actuators and controls the other three panels in the system. The proposed ADF can be adapted to fit various building heights and shapes and can be chosen due to their structural efficiency that results in material savings and flexibility in designing of complex buildings. This paper makes advances towards an adaptive origami-inspired diagrid facade has the potential to redistribute wind loads in real-time. With sustainable design becoming an important factor in design, low energy options for the adaptive facades were considered. This research performs computational fluid dynamic analysis of five three-dimensional building structures: a conventional regular building structure, a diagrid building structure without corner columns, and three origami-inspired facade configurations on diagrid building structures. The purpose of this study is to understand effects of the different building envelope geometries on the fluid dynamics and explore the potential use in optimal shape configuration for real-time morphing adaptation of high-rise buildings subjected to extreme wind loading.
引用
收藏
页数:11
相关论文
共 26 条
[1]   Adaptive Facade: concept, applications, research questions [J].
Aelenei, Daniel ;
Aelenei, Laura ;
Vieira, Catarina Pacheco .
PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON SOLAR HEATING AND COOLING FOR BUILDINGS AND INDUSTRY (SHC 2015), 2016, 91 :269-275
[2]  
American Society of Civil Engineers, 2016, MIN DES LOADS ASS CR
[3]   Diagrid: An innovative, sustainable, and efficient structural system [J].
Asadi, Esmaeel ;
Adeli, Hojjat .
STRUCTURAL DESIGN OF TALL AND SPECIAL BUILDINGS, 2017, 26 (08)
[4]   Performance of structural glass facades under extreme loads - Design methods, existing research, current issues and trends [J].
Bedon, Chiara ;
Zhang, Xihong ;
Santos, Filipe ;
Honfi, Daniel ;
Kozlowski, Marcin ;
Arrigoni, Michel ;
Figuli, Lucia ;
Lange, David .
CONSTRUCTION AND BUILDING MATERIALS, 2018, 163 :921-937
[5]  
Boustani J., 2019, AIAA SCITECH 2019 FO, P1896
[6]   A locally stabilized immersed boundary method for the compressible Navier-Stokes equations [J].
Brehm, C. ;
Hader, C. ;
Fasel, H. F. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 295 :475-504
[7]   A novel concept for the design of immersed interface methods [J].
Brehm, C. ;
Fasel, H. F. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 :234-267
[8]  
Brehm C., 2018, 2018 AIAA AER SCI M, P8
[9]  
Brehm C., 2019, J COMPUTATIONAL PHYS
[10]  
Brownell BE., 2017, TRANSMATERIAL NEXT C, V1st Ed