Generalized Darboux transformation and parameter-dependent rogue wave solutions to a nonlinear Schrodinger system

被引:38
作者
Mukam, Serge Paulin T. [1 ,2 ,3 ]
Souleymanou, Abbagari [1 ,2 ,4 ]
Kuetche, Victor K. [1 ,2 ,3 ,5 ]
Bouetou, Thomas B. [1 ,2 ,3 ,5 ]
机构
[1] Univ Yaounde I, Natl Adv Sch Engn, POB 8390, Yaounde, Cameroon
[2] Univ Yaounde I, Dept Phys, Lab Mech Mat & Struct, POB 812, Yaounde, Cameroon
[3] Univ Yaounde I, CETIC, POB 8390, Yaounde, Cameroon
[4] Univ Maroua, Fac Mines & Petr Ind, Dept Basic Sci Law & Humanities, POB 46, Maroua, Cameroon
[5] Abdus Salam Int Ctr Theoret Phys ICTP, Str Costiera 11, I-34151 Trieste, Italy
关键词
Nonlinear Schrodinger equation; Higherorder nonlinearity; Darboux transformation; Rogue wave; EQUATIONS; SOLITON;
D O I
10.1007/s11071-018-4198-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, we are concerned with a generalized nonlinear Schrodinger equation, which can describe the propagation of nonlinear wave phenomena in plasma, optics and in deep water field. We construct, up to the second-order expansion, rogue wave solutions and give general formula to obtain higher-order ones to this system. We investigate the effects of the higher-order nonlinearity on the rogue waves dynamics. We make use of the generalized Darboux transformation, based on the Darboux matrix method.
引用
收藏
页码:373 / 383
页数:11
相关论文
共 38 条
[31]   Optical rogue waves [J].
Solli, D. R. ;
Ropers, C. ;
Koonath, P. ;
Jalali, B. .
NATURE, 2007, 450 (7172) :1054-U7
[32]   Influence of optical activity on rogue waves propagating in chiral optical fibers [J].
Temgoua, D. D. Estelle ;
Kofane, T. C. .
PHYSICAL REVIEW E, 2016, 93 (06)
[33]   Nonparaxial rogue waves in optical Kerr media [J].
Temgoua, D. D. Estelle ;
Kofane, T. C. .
PHYSICAL REVIEW E, 2015, 91 (06)
[34]   Peregrine rogue waves induced by the interaction between a continuous wave and a soliton [J].
Yang, Guangye ;
Li, Lu ;
Jia, Suotang .
PHYSICAL REVIEW E, 2012, 85 (04)
[35]  
ZAKHAROV VE, 1972, SOV PHYS JETP-USSR, V34, P62
[36]   Nth-order rogue wave solutions of the complex modified Korteweg-de Vries equation [J].
Zhaqilao .
PHYSICA SCRIPTA, 2013, 87 (06)
[37]   Nonlinear tunneling for controllable rogue waves in two dimensional graded-index waveguides [J].
Zhu, Hai-Ping .
NONLINEAR DYNAMICS, 2013, 72 (04) :873-882
[38]  
Zhu Y, 2017, NONLINEAR DYNAM, V88, P1883, DOI 10.1007/s11071-017-3350-3