Nanoscale Faceting and Ligand Shell Structure Dominate the Self-Assembly of Nonpolar Nanoparticles into Superlattices

被引:20
作者
Bo, Arixin [1 ]
Liu, Yawei [2 ]
Kuttich, Bjoern [1 ]
Kraus, Tobias [1 ,3 ]
Widmer-Cooper, Asaph [2 ,4 ]
de Jonge, Niels [1 ,5 ]
机构
[1] INM Leibniz Inst New Mat, D-66123 Saarbrucken, Germany
[2] Univ Sydney, Arc Ctr Excellence Exciton Sci, Sch Chem, Sydney, NSW 2006, Australia
[3] Saarland Univ, Dept Chem, D-66123 Saarbrucken, Germany
[4] Univ Sydney, Nano Inst, Sydney, NSW 2006, Australia
[5] Saarland Univ, Dept Phys, D-66123 Saarbrucken, Germany
基金
澳大利亚研究理事会;
关键词
gold nanoparticles; liquid-solid interfaces; nanoparticle faceting; self-assembly; superlattices; surface modification; TRANSMISSION ELECTRON-MICROSCOPY; COLLOIDAL NANOCRYSTALS; GOLD NANOPARTICLES; QUASI-CRYSTALS; AU; PRINCIPLES; RESOLUTION; MATTER;
D O I
10.1002/adma.202109093
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-assembly of nanoscale structures at liquid-solid interfaces occurs in a broad range of industrial processes and is found in various phenomena in nature. Conventional theory assumes spherical particles and homogeneous surfaces, but that model is oversimplified, and nanoscale in situ observations are needed for a more complete understanding. Liquid-phase scanning transmission electron microscopy (LP-STEM) is used to examine the interactions that direct the self-assembly of superlattices formed by gold nanoparticles (AuNPs) in nonpolar liquids. Varying the molecular coating of the substrate modulates short-range attraction and leads to switching between a range of different geometric structures, including hexagonal close-packed (hcp), simple hexagonal (sh), dodecahedral quasi-crystal (dqc), and body-centered cubic (bcc) lattices, as well as random distributions. Langevin dynamics simulations explain the experimental results in terms of the interplay between nanoparticle faceting, ligand shell structure, and substrate-NP interactions.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Critical differences in 3D atomic structure of individual ligand-protected nanocrystals in solution [J].
Kim, Byung Hyo ;
Heo, Junyoung ;
Kim, Sungin ;
Reboul, Cyril F. ;
Chun, Hoje ;
Kang, Dohun ;
Bae, Hyeonhu ;
Hyun, Hyejeong ;
Lim, Jongwoo ;
Lee, Hoonkyung ;
Han, Byungchan ;
Hyeon, Taeghwan ;
Alivisatos, A. Paul ;
Ercius, Peter ;
Elmlund, Hans ;
Park, Jungwon .
SCIENCE, 2020, 368 (6486) :60-+
[22]   Liquid-Phase Transmission Electron Microscopy for Studying Colloidal Inorganic Nanoparticles [J].
Kim, Byung Hyo ;
Yang, Jiwoong ;
Lee, Donghoon ;
Choi, Back Kyu ;
Hyeon, Taeghwan ;
Park, Jungwon .
ADVANCED MATERIALS, 2018, 30 (04)
[23]   Imaging the polymerization of multivalent nanoparticles in solution [J].
Kim, Juyeong ;
Ou, Zihao ;
Jones, Matthew R. ;
Song, Xiaohui ;
Chen, Qian .
NATURE COMMUNICATIONS, 2017, 8
[24]   Colloidal Stability of Apolar Nanoparticles: The Role of Particle Size and Ligand Shell Structure [J].
Kister, Thomas ;
Monego, Debora ;
Mulvaney, Paul ;
Widmer-Cooper, Asaph ;
Kraus, Tobias .
ACS NANO, 2018, 12 (06) :5969-5977
[25]  
Kohl Helmut., 2008, Transmission Electron Microscopy, V36
[26]   Nanoparticle printing with single-particle resolution [J].
Kraus, Tobias ;
Malaquin, Laurent ;
Schmid, Heinz ;
Riess, Walter ;
Spencer, Nicholas D. ;
Wolf, Heiko .
NATURE NANOTECHNOLOGY, 2007, 2 (09) :570-576
[27]   Bioactive Antifouling Surfaces by Visible-Light-Triggered Polymerization [J].
Kuzmyn, Andriy R. ;
Nguyen, Ai T. ;
Zuilhof, Han ;
Baggerman, Jacob .
ADVANCED MATERIALS INTERFACES, 2019, 6 (12)
[28]   Asymmetric orientation of toluene molecules at oil-silica interfaces [J].
Ledyastuti, Mia ;
Liang, Yunfeng ;
Kunieda, Makoto ;
Matsuoka, Toshifumi .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (06)
[29]   Quasicrystals: A matter of definition [J].
Lifshitz, R .
FOUNDATIONS OF PHYSICS, 2003, 33 (12) :1703-1711
[30]  
Liu J., 2021, CHEM REV