Density Measurements of Supercritical CO2 + Dagang Brine for CO2 Geological Storage

被引:1
|
作者
Zhang, Yi [1 ]
Shen, Yong [1 ]
Song, Yongchen [1 ]
Zhan, Yangchun [1 ]
Nishio, Masahiro [2 ]
Jian, Weiwei [1 ]
Xing, Wanli [1 ]
Hu, Cheng [1 ]
机构
[1] Dalian Univ Technol, Minist Educ, Key Lab Ocean Energy Utilizat & Energy Conservat, Dalian 116024, Liaoning, Peoples R China
[2] Natl Inst Adv Ind Sci & Technol, Tokyo, Japan
来源
GHGT-11 | 2013年 / 37卷
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
CO2 emission mitigation; CO2-brine system; Density; Magnetic suspension balance; CARBON-DIOXIDE; WATER; SEQUESTRATION; SOLUBILITIES; PRESSURES;
D O I
10.1016/j.egypro.2013.06.484
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Carbon dioxide capture and storage (CCS) in saline aquifers has been considered as one possible means of reducing greenhouse gas emissions and mitigating climate change. The density difference of 0.1 kg.m-3 is sufficient to drive a natural CO2-bearing solution to either sink or buoy, which is one of the main factors affecting the safety of CO2 storage. The density of CO2 aqueous solution is also necessary to estimate the storage capacity of the storage formation. Therefore, the density change due to the dissolution of CO2 is essential for simulation of CO2 sequestration process and CO2 migration in the formation. The density experiments were performed using a magnetic suspension balance (MSB) manufactured by Rubotherm Prazisionsmesstechnik GmbH. The measuring conditions (temperature, pressure and measuring medium) can be artificially controlled because the balance and the measuring cell were completely isolated. Taking full advantage of the high accuracy and stability of the magnetic suspension balance, this paper reported the experimental densities of CO2-brine solution from Dagang Oilfield reservoir. The densities of CO2 brine mixture were measured in CO2 geological storage conditions such as 313K-353K, 10-18MPa and CO2 mole fraction in solution up to 0.0123. The effects of different conditions on CO2 aqueous solution density were analyzed based on the experimental data. It was found that the density of CO2 aqueous solution increases linearly with the pressure and the slopes at different concentrations are almost the same at a certain temperature. We also found that the dissolution of CO2 in brine will increase the density of aqueous solution in our experimental conditions. And at a constant pressure, the density of CO2 aqueous solutions increases with increasing CO2 concentration almost linearly in the experimental range. It provides systematic experimental density data for Tianjin Dagang CCS project (C) 2013 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:5620 / 5627
页数:8
相关论文
共 50 条
  • [21] Behavior of CO2/water flow in porous media for CO2 geological storage
    Jiang, Lanlan
    Yu, Minghao
    Liu, Yu
    Yang, Mingjun
    Zhang, Yi
    Xue, Ziqiu
    Suekane, Tetsuya
    Song, Yongchen
    MAGNETIC RESONANCE IMAGING, 2017, 37 : 100 - 106
  • [22] Analysis of the Impact of CO2 Adsorption on Rock Wettability for Geological Storage of CO2
    Wang, Jinsheng
    Samara, Hanin
    Ko, Vivien
    Rodgers, Dustin
    Ryan, David
    Jaeger, Philip
    ENERGY & FUELS, 2023, 37 (18) : 14046 - 14052
  • [23] Molecular simulation of CO2 adsorption on kaolinite: Insights into geological storage of CO2
    Wang, Yichen
    Ding, Ziwei
    Cao, Zhou
    Han, Fangchun
    Wang, Yang
    Cheng, Hongfei
    APPLIED CLAY SCIENCE, 2024, 258
  • [24] Estimating a baseline of soil CO2 flux at CO2 geological storage sites
    Salmawati Salmawati
    Kyuro Sasaki
    Yuichi Sugai
    Amin Yousefi-Sahzabi
    Environmental Monitoring and Assessment, 2019, 191
  • [25] Brine/CO2 Interfacial Properties and Effects on CO2 Storage in Deep Saline Aquifers
    Chalbaud, C.
    Robin, M.
    Lombard, J. -M.
    Bertin, H.
    Egermann, P.
    OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2010, 65 (04): : 541 - 555
  • [26] Interfacial tension measurements and wettability evaluation for geological CO2 storage
    Chalbaud, C.
    Robin, M.
    Lombard, J-M
    Martin, F.
    Egermann, P.
    Bertin, H.
    ADVANCES IN WATER RESOURCES, 2009, 32 (01) : 98 - 109
  • [27] AN OVERVIEW OF CO2 GEOLOGICAL STORAGE IN CHINA
    Qiao, Xiaojuan
    Li, Guomin
    MeDermott, Christopher I.
    Wu, Runjian
    Haszeldine, R. Stuart
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2010, 9 (07): : 889 - 896
  • [28] Potential for geological storage of CO2 in the Netherlands
    Schreurs, HCE
    GREENHOUSE GAS CONTROL TECHNOLOGIES, VOLS I AND II, PROCEEDINGS, 2003, : 303 - 308
  • [29] CO2 Geological Storage Potential in Korea
    Huh, Dae-Gee
    Park, Yong-Chan
    Yoo, Dong-Geun
    Hwang, Se-Ho
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 4881 - 4888
  • [30] Economics of geological CO2 storage and leakage
    van der Zwaan, Bob
    Gerlagh, Reyer
    CLIMATIC CHANGE, 2009, 93 (3-4) : 285 - 309