Pairwise comparison dynamics for games with continuous strategy space

被引:34
作者
Cheung, Man-Wah [1 ]
机构
[1] Univ Wisconsin, Dept Econ, Madison, WI 53706 USA
关键词
Evolutionary dynamics; Population games; Continuous strategy space; EVOLUTIONARY STABILITY; NASH;
D O I
10.1016/j.jet.2014.07.001
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper studies pairwise comparison dynamics for population games with continuous strategy space. We show that the pairwise comparison dynamic is well-defined if certain mild Lipschitz continuity conditions are satisfied. We establish Nash stationarity and positive correlation for pairwise comparison dynamics. Finally, we prove global convergence and local stability under general deterministic evolutionary dynamics in potential games, and global asymptotic stability under pairwise comparison dynamics in contractive games. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:344 / 375
页数:32
相关论文
共 28 条
[1]  
[Anonymous], 1999, CLASSICS APPL MATH, DOI DOI 10.1137/1.9781611971088
[2]  
[Anonymous], 1995, Probability
[3]  
[Anonymous], 2010, Population Games and Evolutionary Dynamics
[4]  
[Anonymous], 1999, CONVERGE PROBAB MEAS
[5]   CROSS ENTROPY MINIMIZATION IN UNINVADABLE STATES OF COMPLEX POPULATIONS [J].
BOMZE, IM .
JOURNAL OF MATHEMATICAL BIOLOGY, 1991, 30 (01) :73-87
[6]   DYNAMIC ASPECTS OF EVOLUTIONARY STABILITY [J].
BOMZE, IM .
MONATSHEFTE FUR MATHEMATIK, 1990, 110 (3-4) :189-206
[7]  
Conway John B, 2019, Graduate Texts in Mathematics, V96
[8]   Evolutionary dynamics over continuous action spaces for population games that arise from symmetric two-player games [J].
Friedman, Daniel ;
Ostrov, Daniel N. .
JOURNAL OF ECONOMIC THEORY, 2013, 148 (02) :743-777
[9]   Gradient dynamics in population games: Some basic results [J].
Friedman, Daniel ;
Ostrov, Daniel N. .
JOURNAL OF MATHEMATICAL ECONOMICS, 2010, 46 (05) :691-707
[10]   THE INVERSE FUNCTION THEOREM OF NASH AND MOSER [J].
HAMILTON, RS .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (01) :65-222